test_three_interpolate.py 3.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pytest
import torch

from mmcv.ops import three_interpolate


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_three_interpolate():
    features = torch.tensor([[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350],
                              [3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236],
                              [2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732],
                              [0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124],
                              [0.3207, 0.0000, 0.3411, 0.3207, 0.3207,
                               0.3207]],
                             [[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000],
                              [0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346],
                              [0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000],
                              [0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414],
                              [0.5814, 0.0103, 0.0000, 0.5814, 0.5814,
                               0.5814]]]).cuda()

    idx = torch.tensor([[[0, 1, 2], [2, 3, 4], [2, 3, 4], [0, 1, 2], [0, 1, 2],
                         [0, 1, 3]],
                        [[0, 2, 3], [1, 3, 4], [2, 1, 4], [0, 2, 4], [0, 2, 4],
                         [0, 1, 2]]]).int().cuda()

    weight = torch.tensor([[[3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [1.0000e+00, 5.8155e-08, 2.2373e-08],
                            [1.0000e+00, 1.7737e-08, 1.7356e-08],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01]],
                           [[3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [1.0000e+00, 1.3651e-08, 7.7312e-09],
                            [1.0000e+00, 1.7148e-08, 1.4070e-08],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01],
                            [3.3333e-01, 3.3333e-01, 3.3333e-01]]]).cuda()

    output = three_interpolate(features, idx, weight)
    expected_output = torch.tensor([[[
        3.8953e+00, 4.4995e+00, 4.4995e+00, 3.8953e+00, 3.8953e+00, 3.2072e+00
    ], [
        2.9320e+00, 3.0447e+00, 3.0447e+00, 2.9320e+00, 2.9320e+00, 2.9583e+00
    ], [
        2.7281e+00, 2.6436e+00, 2.6436e+00, 2.7281e+00, 2.7281e+00, 2.7380e+00
    ], [
        4.6824e+00, 7.0199e+00, 7.0199e+00, 4.6824e+00, 4.6824e+00, 2.3466e+00
    ], [
        2.2060e-01, 3.4110e-01, 3.4110e-01, 2.2060e-01, 2.2060e-01, 2.1380e-01
    ]],
                                    [[
                                        8.1773e-01, 9.5440e-01, 2.4532e+00,
                                        8.1773e-01, 8.1773e-01, 1.1359e+00
                                    ],
                                     [
                                         8.4689e-01, 1.9176e+00, 1.4715e+00,
                                         8.4689e-01, 8.4689e-01, 1.3079e+00
                                     ],
                                     [
                                         6.9473e-01, 2.7440e-01, 2.0842e+00,
                                         6.9473e-01, 6.9473e-01, 7.8619e-01
                                     ],
                                     [
                                         7.6789e-01, 1.5063e+00, 1.6209e+00,
                                         7.6789e-01, 7.6789e-01, 1.1562e+00
                                     ],
                                     [
                                         3.8760e-01, 1.0300e-02, 8.3569e-09,
                                         3.8760e-01, 3.8760e-01, 1.9723e-01
                                     ]]]).cuda()

    assert torch.allclose(output, expected_output, 1e-4)