test_box_iou_rotated.py 4.65 KB
Newer Older
1
import numpy as np
2
import pytest
3
4
5
6
7
import torch


class TestBoxIoURotated(object):

8
    def test_box_iou_rotated_cpu(self):
9
        from mmcv.ops import box_iou_rotated
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

    @pytest.mark.skipif(
        not torch.cuda.is_available(), reason='requires CUDA support')
    def test_box_iou_rotated_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
61
        assert np.allclose(
62
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    def test_box_iou_rotated_iof_cpu(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

    @pytest.mark.skipif(
        not torch.cuda.is_available(), reason='requires CUDA support')
    def test_box_iou_rotated_iof_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)