test_ms_deformable_attn.py 6.45 KB
Newer Older
1
2
3
4
import pytest
import torch

from mmcv.ops.multi_scale_deform_attn import (
5
6
    MultiScaleDeformableAttention, MultiScaleDeformableAttnFunction,
    multi_scale_deformable_attn_pytorch)
7

pc's avatar
pc committed
8
9
10
11
12
13
14
_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck
    _USING_PARROTS = False

15

Zaida Zhou's avatar
Zaida Zhou committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
@pytest.mark.parametrize('device_type', [
    'cpu',
    pytest.param(
        'cuda:0',
        marks=pytest.mark.skipif(
            not torch.cuda.is_available(), reason='requires CUDA support'))
])
def test_multiscale_deformable_attention(device_type):

    with pytest.raises(ValueError):
        # embed_dims must be divisible by num_heads,
        MultiScaleDeformableAttention(
            embed_dims=256,
            num_heads=7,
        )
    device = torch.device(device_type)
    msda = MultiScaleDeformableAttention(
        embed_dims=3, num_levels=2, num_heads=3)
    msda.init_weights()
    num_query = 5
    bs = 1
    embed_dims = 3
    query = torch.rand(num_query, bs, embed_dims).to(device)
    key = torch.rand(num_query, bs, embed_dims).to(device)
    spatial_shapes = torch.Tensor([[2, 2], [1, 1]]).long().to(device)
    level_start_index = torch.Tensor([0, 4]).long().to(device)
    reference_points = torch.rand(bs, num_query, 2, 2).to(device)
    msda.to(device)
    msda(
        query,
        key,
        key,
        reference_points=reference_points,
        spatial_shapes=spatial_shapes,
        level_start_index=level_start_index)


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def test_forward_multi_scale_deformable_attn_pytorch():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
    S = sum([(H * W).item() for H, W in shapes])

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D) * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2)
    attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)

    multi_scale_deformable_attn_pytorch(value.double(), shapes,
                                        sampling_locations.double(),
                                        attention_weights.double()).detach()


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_forward_equal_with_pytorch_double():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum([(H * W).item() for H, W in shapes])

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2
    output_pytorch = multi_scale_deformable_attn_pytorch(
        value.double(), shapes, sampling_locations.double(),
        attention_weights.double()).detach().cpu()

    output_cuda = MultiScaleDeformableAttnFunction.apply(
        value.double(), shapes, level_start_index, sampling_locations.double(),
        attention_weights.double(), im2col_step).detach().cpu()
    assert torch.allclose(output_cuda, output_pytorch)
    max_abs_err = (output_cuda - output_pytorch).abs().max()
    max_rel_err = ((output_cuda - output_pytorch).abs() /
                   output_pytorch.abs()).max()
    assert max_abs_err < 1e-18
    assert max_rel_err < 1e-15


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_forward_equal_with_pytorch_float():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum([(H * W).item() for H, W in shapes])

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2
    output_pytorch = multi_scale_deformable_attn_pytorch(
        value, shapes, sampling_locations, attention_weights).detach().cpu()

    output_cuda = MultiScaleDeformableAttnFunction.apply(
        value, shapes, level_start_index, sampling_locations,
        attention_weights, im2col_step).detach().cpu()
    assert torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
    max_abs_err = (output_cuda - output_pytorch).abs().max()
    max_rel_err = ((output_cuda - output_pytorch).abs() /
                   output_pytorch.abs()).max()
    assert max_abs_err < 1e-9
    assert max_rel_err < 1e-6


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
139
140
141
142
143
144
145
146
@pytest.mark.parametrize('channels', [
    4,
    30,
    32,
    64,
    71,
    1025,
])
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def test_gradient_numerical(channels,
                            grad_value=True,
                            grad_sampling_loc=True,
                            grad_attn_weight=True):

    N, M, _ = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum([(H * W).item() for H, W in shapes])

    value = torch.rand(N, S, M, channels).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2

    func = MultiScaleDeformableAttnFunction.apply

    value.requires_grad = grad_value
    sampling_locations.requires_grad = grad_sampling_loc
    attention_weights.requires_grad = grad_attn_weight
pc's avatar
pc committed
172
173
174
175
176
177
178
179
180
181
    if _USING_PARROTS:
        assert gradcheck(
            func, (value.double(), shapes, level_start_index,
                   sampling_locations.double(), attention_weights.double(),
                   im2col_step),
            no_grads=[shapes, level_start_index])
    else:
        assert gradcheck(func, (value.double(), shapes, level_start_index,
                                sampling_locations.double(),
                                attention_weights.double(), im2col_step))