test_nms.py 6.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import pytest
import torch


class Testnms(object):

    def test_nms_allclose(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import nms
        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                            dtype=np.float32)
        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
        np_inds = np.array([1, 0, 3])
        np_dets = np.array([[3.0, 6.0, 9.0, 11.0, 0.9],
                            [6.0, 3.0, 8.0, 7.0, 0.6],
                            [1.0, 4.0, 13.0, 7.0, 0.2]])
        boxes = torch.from_numpy(np_boxes)
        scores = torch.from_numpy(np_scores)
        dets, inds = nms(boxes, scores, iou_threshold=0.3, offset=0)
        assert np.allclose(dets, np_dets)  # test cpu
        assert np.allclose(inds, np_inds)  # test cpu
        dets, inds = nms(
            boxes.cuda(), scores.cuda(), iou_threshold=0.3, offset=0)
        assert np.allclose(dets.cpu().numpy(), np_dets)  # test gpu
        assert np.allclose(inds.cpu().numpy(), np_inds)  # test gpu

    def test_softnms_allclose(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import soft_nms
        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                            dtype=np.float32)
        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)

        np_output = {
            'linear': {
                'dets':
                np.array(
                    [[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
                     [3., 7., 10., 12., 0.29024392], [1., 4., 13., 7., 0.2]],
                    dtype=np.float32),
                'inds':
                np.array([1, 0, 2, 3], dtype=np.int64)
            },
            'gaussian': {
                'dets':
                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.59630775],
                          [3., 7., 10., 12., 0.35275510],
                          [1., 4., 13., 7., 0.18650459]],
                         dtype=np.float32),
                'inds':
                np.array([1, 0, 2, 3], dtype=np.int64)
            },
            'naive': {
                'dets':
                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
                          [1., 4., 13., 7., 0.2]],
                         dtype=np.float32),
                'inds':
                np.array([1, 0, 3], dtype=np.int64)
            }
        }

        boxes = torch.from_numpy(np_boxes)
        scores = torch.from_numpy(np_scores)

        configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
                   [0.3, 0.5, 0.01, 'naive']]

        for iou, sig, mscore, m in configs:
            dets, inds = soft_nms(
                boxes,
                scores,
                iou_threshold=iou,
                sigma=sig,
                min_score=mscore,
                method=m)
            assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
            assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])

        if torch.__version__ != 'parrots':
            boxes = boxes.cuda()
            scores = scores.cuda()
            for iou, sig, mscore, m in configs:
                dets, inds = soft_nms(
                    boxes,
                    scores,
                    iou_threshold=iou,
                    sigma=sig,
                    min_score=mscore,
                    method=m)
                assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
                assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])

    def test_nms_match(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import nms, nms_match
        iou_thr = 0.6
        # empty input
        empty_dets = np.array([])
        assert len(nms_match(empty_dets, iou_thr)) == 0

        # non empty ndarray input
        np_dets = np.array(
            [[49.1, 32.4, 51.0, 35.9, 0.9], [49.3, 32.9, 51.0, 35.3, 0.9],
             [35.3, 11.5, 39.9, 14.5, 0.4], [35.2, 11.7, 39.7, 15.7, 0.3]],
            dtype=np.float32)
        np_groups = nms_match(np_dets, iou_thr)
        assert isinstance(np_groups[0], np.ndarray)
        assert len(np_groups) == 2
        tensor_dets = torch.from_numpy(np_dets)
        boxes = tensor_dets[:, :4]
        scores = tensor_dets[:, 4]
        nms_keep_inds = nms(boxes.contiguous(), scores.contiguous(),
                            iou_thr)[1]
        assert set([g[0].item()
                    for g in np_groups]) == set(nms_keep_inds.tolist())

        # non empty tensor input
        tensor_dets = torch.from_numpy(np_dets)
        tensor_groups = nms_match(tensor_dets, iou_thr)
        assert isinstance(tensor_groups[0], torch.Tensor)
        for i in range(len(tensor_groups)):
            assert np.equal(tensor_groups[i].numpy(), np_groups[i]).all()

        # input of wrong shape
        wrong_dets = np.zeros((2, 3))
        with pytest.raises(AssertionError):
            nms_match(wrong_dets, iou_thr)
135
136
137
138
139
140
141
142

    def test_batched_nms(self):
        import mmcv
        from mmcv.ops import batched_nms
        results = mmcv.load('./tests/data/batched_nms_data.pkl')

        nms_cfg = dict(type='nms', iou_threshold=0.7)
        boxes, keep = batched_nms(
143
144
145
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
146
147
148
149
150
            nms_cfg,
            class_agnostic=False)

        nms_cfg.update(split_thr=100)
        seq_boxes, seq_keep = batched_nms(
151
152
153
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
154
155
156
157
158
            nms_cfg,
            class_agnostic=False)

        assert torch.equal(keep, seq_keep)
        assert torch.equal(boxes, seq_boxes)
159
        assert torch.equal(keep, torch.from_numpy(results['keep']))
Shilong Zhang's avatar
Shilong Zhang committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

        nms_cfg = dict(type='soft_nms', iou_threshold=0.7)
        boxes, keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        nms_cfg.update(split_thr=100)
        seq_boxes, seq_keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        assert torch.equal(keep, seq_keep)
        assert torch.equal(boxes, seq_boxes)