pybind.cpp 27.4 KB
Newer Older
1
// Copyright (c) OpenMMLab. All rights reserved
2
3
4
5
6
#include "pytorch_cpp_helper.hpp"

std::string get_compiler_version();
std::string get_compiling_cuda_version();

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
void carafe_naive_forward(Tensor features, Tensor masks, Tensor output,
                          int kernel_size, int group_size, int scale_factor);

void carafe_naive_backward(Tensor top_grad, Tensor features, Tensor masks,
                           Tensor bottom_grad, Tensor mask_grad,
                           int kernel_size, int group_size, int scale_factor);

void carafe_forward(Tensor features, Tensor masks, Tensor rfeatures,
                    Tensor routput, Tensor rmasks, Tensor output,
                    int kernel_size, int group_size, int scale_factor);

void carafe_backward(Tensor top_grad, Tensor rfeatures, Tensor masks,
                     Tensor rtop_grad, Tensor rbottom_grad_hs,
                     Tensor rbottom_grad, Tensor rmask_grad, Tensor bottom_grad,
                     Tensor mask_grad, int kernel_size, int group_size,
                     int scale_factor);

void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
                         Tensor output, Tensor columns, Tensor ones, int kW,
                         int kH, int dW, int dH, int padW, int padH,
                         int dilationW, int dilationH, int group,
                         int deformable_group, int im2col_step);

void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
                                Tensor gradInput, Tensor gradOffset,
                                Tensor weight, Tensor columns, int kW, int kH,
                                int dW, int dH, int padW, int padH,
                                int dilationW, int dilationH, int group,
                                int deformable_group, int im2col_step);

void deform_conv_backward_parameters(Tensor input, Tensor offset,
                                     Tensor gradOutput, Tensor gradWeight,
                                     Tensor columns, Tensor ones, int kW,
                                     int kH, int dW, int dH, int padW, int padH,
                                     int dilationW, int dilationH, int group,
                                     int deformable_group, float scale,
                                     int im2col_step);
44
45
46
47
48
49
50
51
52
53
54
55

void deform_roi_pool_forward(Tensor input, Tensor rois, Tensor offset,
                             Tensor output, int pooled_height, int pooled_width,
                             float spatial_scale, int sampling_ratio,
                             float gamma);

void deform_roi_pool_backward(Tensor grad_output, Tensor input, Tensor rois,
                              Tensor offset, Tensor grad_input,
                              Tensor grad_offset, int pooled_height,
                              int pooled_width, float spatial_scale,
                              int sampling_ratio, float gamma);

56
57
void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha);
58

59
60
void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor grad_input, float gamma, float alpha);
61

62
63
void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha);
64

65
66
67
void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor buff, Tensor grad_input, float gamma,
                                 float alpha);
68
69
70
71

void bbox_overlaps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
                   const int mode, const bool aligned, const int offset);

72
73
74
75
76
77
78
79
void furthest_point_sampling_forward(int b, int n, int m, Tensor points_tensor,
                                     Tensor temp_tensor, Tensor idx_tensor);

void furthest_point_sampling_with_dist_forward(int b, int n, int m,
                                               Tensor points_tensor,
                                               Tensor temp_tensor,
                                               Tensor idx_tensor);

80
81
82
83
void masked_im2col_forward(const Tensor im, const Tensor mask_h_idx,
                           const Tensor mask_w_idx, Tensor col,
                           const int kernel_h, const int kernel_w,
                           const int pad_h, const int pad_w);
84

85
86
87
void masked_col2im_forward(const Tensor col, const Tensor mask_h_idx,
                           const Tensor mask_w_idx, Tensor im, int height,
                           int width, int channels);
88

89
void modulated_deform_conv_forward(
90
91
92
93
94
95
    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    const int dilation_h, const int dilation_w, const int group,
    const int deformable_group, const bool with_bias);

96
void modulated_deform_conv_backward(
97
98
99
100
101
102
103
    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    const bool with_bias);

104
105
106
107
108
Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
                              const Tensor &level_start_index,
                              const Tensor &sampling_loc,
                              const Tensor &attn_weight, const int im2col_step);

pc's avatar
pc committed
109
110
111
112
113
114
115
void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
                             const Tensor &level_start_index,
                             const Tensor &sampling_loc,
                             const Tensor &attn_weight,
                             const Tensor &grad_output, Tensor &grad_value,
                             Tensor &grad_sampling_loc,
                             Tensor &grad_attn_weight, const int im2col_step);
116

117
118
119
120
121
Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset);

Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
               float sigma, float min_score, int method, int offset);

122
std::vector<std::vector<int>> nms_match(Tensor dets, float iou_threshold);
123

124
std::vector<std::vector<float>> pixel_group(
125
126
127
    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    Tensor kernel_contour, int kernel_region_num, float distance_threshold);

128
129
130
131
std::vector<std::vector<int>> contour_expand(Tensor kernel_mask,
                                             Tensor internal_kernel_label,
                                             int min_kernel_area,
                                             int kernel_num);
132

133
134
void roi_align_forward(Tensor input, Tensor rois, Tensor output,
                       Tensor argmax_y, Tensor argmax_x, int aligned_height,
135
136
137
                       int aligned_width, float spatial_scale,
                       int sampling_ratio, int pool_mode, bool aligned);

138
139
140
141
142
143
144
void roi_align_backward(Tensor grad_output, Tensor rois, Tensor argmax_y,
                        Tensor argmax_x, Tensor grad_input, int aligned_height,
                        int aligned_width, float spatial_scale,
                        int sampling_ratio, int pool_mode, bool aligned);

void roi_pool_forward(Tensor input, Tensor rois, Tensor output, Tensor argmax,
                      int pooled_height, int pooled_width, float spatial_scale);
145

146
147
148
void roi_pool_backward(Tensor grad_output, Tensor rois, Tensor argmax,
                       Tensor grad_input, int pooled_height, int pooled_width,
                       float spatial_scale);
149
150
151
152
153
154

void sync_bn_forward_mean(const Tensor input, Tensor mean);

void sync_bn_forward_var(const Tensor input, const Tensor mean, Tensor var);

void sync_bn_forward_output(const Tensor input, const Tensor mean,
155
156
157
                            const Tensor var, const Tensor weight,
                            const Tensor bias, Tensor running_mean,
                            Tensor running_var, Tensor norm, Tensor std,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                            Tensor output, float eps, float momentum,
                            int group_size);

void sync_bn_backward_param(const Tensor grad_output, const Tensor norm,
                            Tensor grad_weight, Tensor grad_bias);

void sync_bn_backward_data(const Tensor grad_output, const Tensor weight,
                           const Tensor grad_weight, const Tensor grad_bias,
                           const Tensor norm, const Tensor std,
                           Tensor grad_input);

void psamask_forward(const Tensor input, Tensor output, const int psa_type,
                     const int num_, const int h_feature, const int w_feature,
                     const int h_mask, const int w_mask, const int half_h_mask,
                     const int half_w_mask);

void psamask_backward(Tensor grad_output, const Tensor grad_input,
                      const int psa_type, const int num_, const int h_feature,
                      const int w_feature, const int h_mask, const int w_mask,
                      const int half_h_mask, const int half_w_mask);

179
void tin_shift_forward(Tensor input, Tensor shift, Tensor output);
Jintao Lin's avatar
Jintao Lin committed
180

181
void tin_shift_backward(Tensor grad_output, Tensor shift, Tensor grad_input);
Jintao Lin's avatar
Jintao Lin committed
182

183
184
185
186
void ball_query_forward(int b, int n, int m, float min_radius, float max_radius,
                        int nsample, Tensor new_xyz_tensor, Tensor xyz_tensor,
                        Tensor idx_tensor);

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Tensor bottom_pool_forward(Tensor input);

Tensor bottom_pool_backward(Tensor input, Tensor grad_output);

Tensor left_pool_forward(Tensor input);

Tensor left_pool_backward(Tensor input, Tensor grad_output);

Tensor right_pool_forward(Tensor input);

Tensor right_pool_backward(Tensor input, Tensor grad_output);

Tensor top_pool_forward(Tensor input);

Tensor top_pool_backward(Tensor input, Tensor grad_output);

203
void box_iou_rotated(const Tensor boxes1, const Tensor boxes2, Tensor ious,
204
                     const int mode_flag, const bool aligned);
205

206
207
Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
                   const Tensor dets_sorted, const float iou_threshold,
208
209
                   const int multi_label);

210
Tensor upfirdn2d(const Tensor &input, const Tensor &kernel, int up_x, int up_y,
211
212
213
                 int down_x, int down_y, int pad_x0, int pad_x1, int pad_y0,
                 int pad_y1);

214
215
Tensor fused_bias_leakyrelu(const Tensor &input, const Tensor &bias,
                            const Tensor &refer, int act, int grad, float alpha,
216
217
                            float scale);

218
219
220
221
222
223
224
225
226
227
void roi_align_rotated_forward(Tensor input, Tensor rois, Tensor output,
                               int pooled_height, int pooled_width,
                               float spatial_scale, int sample_num,
                               bool aligned, bool clockwise);

void roi_align_rotated_backward(Tensor grad_output, Tensor rois,
                                Tensor grad_input, int pooled_height,
                                int pooled_width, float spatial_scale,
                                int sample_num, bool aligned, bool clockwise);

228
229
230
231
232
233
234
235
void border_align_forward(const Tensor &input, const Tensor &boxes,
                          Tensor output, Tensor argmax_idx,
                          const int pool_size);

void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
                           const Tensor &argmax_idx, Tensor grad_input,
                           const int pool_size);

236
237
238
239
240
241
242
243
244
245
void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
                         int kW, int patchH, int patchW, int padH, int padW,
                         int dilationH, int dilationW, int dilation_patchH,
                         int dilation_patchW, int dH, int dW);

void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
                          Tensor grad_input1, Tensor grad_input2, int kH,
                          int kW, int patchH, int patchW, int padH, int padW,
                          int dilationH, int dilationW, int dilation_patchH,
                          int dilation_patchW, int dH, int dW);
246

247
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
248
249
250
251
  m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)", py::arg("input"),
        py::arg("kernel"), py::arg("up_x"), py::arg("up_y"), py::arg("down_x"),
        py::arg("down_y"), py::arg("pad_x0"), py::arg("pad_x1"),
        py::arg("pad_y0"), py::arg("pad_y1"));
252
  m.def("fused_bias_leakyrelu", &fused_bias_leakyrelu,
253
254
255
        "fused_bias_leakyrelu (CUDA)", py::arg("input"), py::arg("bias"),
        py::arg("empty"), py::arg("act"), py::arg("grad"), py::arg("alpha"),
        py::arg("scale"));
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  m.def("get_compiler_version", &get_compiler_version, "get_compiler_version");
  m.def("get_compiling_cuda_version", &get_compiling_cuda_version,
        "get_compiling_cuda_version");
  m.def("carafe_naive_forward", &carafe_naive_forward, "carafe_naive_forward",
        py::arg("features"), py::arg("masks"), py::arg("output"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_naive_backward", &carafe_naive_backward,
        "carafe_naive_backward", py::arg("top_grad"), py::arg("features"),
        py::arg("masks"), py::arg("bottom_grad"), py::arg("mask_grad"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_forward", &carafe_forward, "carafe_forward",
        py::arg("features"), py::arg("masks"), py::arg("rfeatures"),
        py::arg("routput"), py::arg("rmasks"), py::arg("output"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_backward", &carafe_backward, "carafe_backward",
        py::arg("top_grad"), py::arg("rfeatures"), py::arg("masks"),
        py::arg("rtop_grad"), py::arg("rbottom_grad_hs"),
        py::arg("rbottom_grad"), py::arg("rmask_grad"), py::arg("bottom_grad"),
        py::arg("mask_grad"), py::arg("kernel_size"), py::arg("group_size"),
        py::arg("scale_factor"));
  m.def("deform_conv_forward", &deform_conv_forward, "deform_conv_forward",
        py::arg("input"), py::arg("weight"), py::arg("offset"),
        py::arg("output"), py::arg("columns"), py::arg("ones"), py::arg("kW"),
        py::arg("kH"), py::arg("dW"), py::arg("dH"), py::arg("padH"),
        py::arg("padW"), py::arg("dilationW"), py::arg("dilationH"),
        py::arg("group"), py::arg("deformable_group"), py::arg("im2col_step"));
  m.def("deform_conv_backward_input", &deform_conv_backward_input,
        "deform_conv_backward_input", py::arg("input"), py::arg("offset"),
        py::arg("gradOutput"), py::arg("gradInput"), py::arg("gradOffset"),
        py::arg("weight"), py::arg("columns"), py::arg("kW"), py::arg("kH"),
        py::arg("dW"), py::arg("dH"), py::arg("padH"), py::arg("padW"),
        py::arg("dilationW"), py::arg("dilationH"), py::arg("group"),
        py::arg("deformable_group"), py::arg("im2col_step"));
  m.def("deform_conv_backward_parameters", &deform_conv_backward_parameters,
        "deform_conv_backward_parameters", py::arg("input"), py::arg("offset"),
        py::arg("gradOutput"), py::arg("gradWeight"), py::arg("columns"),
        py::arg("ones"), py::arg("kW"), py::arg("kH"), py::arg("dW"),
        py::arg("dH"), py::arg("padH"), py::arg("padW"), py::arg("dilationW"),
        py::arg("dilationH"), py::arg("group"), py::arg("deformable_group"),
        py::arg("scale"), py::arg("im2col_step"));
  m.def("deform_roi_pool_forward", &deform_roi_pool_forward,
        "deform roi pool forward", py::arg("input"), py::arg("rois"),
        py::arg("offset"), py::arg("output"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("gamma"));
  m.def("deform_roi_pool_backward", &deform_roi_pool_backward,
        "deform roi pool backward", py::arg("grad_output"), py::arg("input"),
        py::arg("rois"), py::arg("offset"), py::arg("grad_input"),
        py::arg("grad_offset"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("gamma"));
  m.def("sigmoid_focal_loss_forward", &sigmoid_focal_loss_forward,
        "sigmoid_focal_loss_forward ", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("output"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("sigmoid_focal_loss_backward", &sigmoid_focal_loss_backward,
        "sigmoid_focal_loss_backward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("grad_input"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("softmax_focal_loss_forward", &softmax_focal_loss_forward,
        "softmax_focal_loss_forward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("output"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("softmax_focal_loss_backward", &softmax_focal_loss_backward,
        "softmax_focal_loss_backward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("buff"), py::arg("grad_input"),
        py::arg("gamma"), py::arg("alpha"));
  m.def("bbox_overlaps", &bbox_overlaps, "bbox_overlaps", py::arg("bboxes1"),
        py::arg("bboxes2"), py::arg("ious"), py::arg("mode"),
        py::arg("aligned"), py::arg("offset"));
326
327
328
329
330
331
332
333
334
  m.def("furthest_point_sampling_forward", &furthest_point_sampling_forward,
        "furthest_point_sampling_forward", py::arg("b"), py::arg("n"),
        py::arg("m"), py::arg("points_tensor"), py::arg("temp_tensor"),
        py::arg("idx_tensor"));
  m.def("furthest_point_sampling_with_dist_forward",
        &furthest_point_sampling_with_dist_forward,
        "furthest_point_sampling_with_dist_forward", py::arg("b"), py::arg("n"),
        py::arg("m"), py::arg("points_tensor"), py::arg("temp_tensor"),
        py::arg("idx_tensor"));
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
  m.def("masked_im2col_forward", &masked_im2col_forward,
        "masked_im2col_forward", py::arg("im"), py::arg("mask_h_idx"),
        py::arg("mask_w_idx"), py::arg("col"), py::arg("kernel_h"),
        py::arg("kernel_w"), py::arg("pad_h"), py::arg("pad_w"));
  m.def("masked_col2im_forward", &masked_col2im_forward,
        "masked_col2im_forward", py::arg("col"), py::arg("mask_h_idx"),
        py::arg("mask_w_idx"), py::arg("im"), py::arg("height"),
        py::arg("width"), py::arg("channels"));
  m.def("modulated_deform_conv_forward", &modulated_deform_conv_forward,
        "modulated deform conv forward", py::arg("input"), py::arg("weight"),
        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
        py::arg("output"), py::arg("columns"), py::arg("kernel_h"),
        py::arg("kernel_w"), py::arg("stride_h"), py::arg("stride_w"),
        py::arg("pad_h"), py::arg("pad_w"), py::arg("dilation_h"),
        py::arg("dilation_w"), py::arg("group"), py::arg("deformable_group"),
        py::arg("with_bias"));
  m.def("modulated_deform_conv_backward", &modulated_deform_conv_backward,
        "modulated deform conv backward", py::arg("input"), py::arg("weight"),
        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
        py::arg("columns"), py::arg("grad_input"), py::arg("grad_weight"),
        py::arg("grad_bias"), py::arg("grad_offset"), py::arg("grad_mask"),
        py::arg("grad_output"), py::arg("kernel_h"), py::arg("kernel_w"),
        py::arg("stride_h"), py::arg("stride_w"), py::arg("pad_h"),
        py::arg("pad_w"), py::arg("dilation_h"), py::arg("dilation_w"),
        py::arg("group"), py::arg("deformable_group"), py::arg("with_bias"));
  m.def("nms", &nms, "nms (CPU/CUDA) ", py::arg("boxes"), py::arg("scores"),
        py::arg("iou_threshold"), py::arg("offset"));
  m.def("softnms", &softnms, "softnms (CPU) ", py::arg("boxes"),
        py::arg("scores"), py::arg("dets"), py::arg("iou_threshold"),
        py::arg("sigma"), py::arg("min_score"), py::arg("method"),
        py::arg("offset"));
  m.def("nms_match", &nms_match, "nms_match (CPU) ", py::arg("dets"),
        py::arg("iou_threshold"));
368
369
370
371
372
373
374
  m.def("pixel_group", &pixel_group, "pixel group (CPU) ", py::arg("score"),
        py::arg("mask"), py::arg("embedding"), py::arg("kernel_label"),
        py::arg("kernel_contour"), py::arg("kernel_region_label"),
        py::arg("distance_threshold"));
  m.def("contour_expand", &contour_expand, "contour exapnd (CPU) ",
        py::arg("kernel_mask"), py::arg("internal_kernel_label"),
        py::arg("min_kernel_area"), py::arg("kernel_num"));
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  m.def("roi_align_forward", &roi_align_forward, "roi_align forward",
        py::arg("input"), py::arg("rois"), py::arg("output"),
        py::arg("argmax_y"), py::arg("argmax_x"), py::arg("aligned_height"),
        py::arg("aligned_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
  m.def("roi_align_backward", &roi_align_backward, "roi_align backward",
        py::arg("grad_output"), py::arg("rois"), py::arg("argmax_y"),
        py::arg("argmax_x"), py::arg("grad_input"), py::arg("aligned_height"),
        py::arg("aligned_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
  m.def("roi_pool_forward", &roi_pool_forward, "roi_pool forward",
        py::arg("input"), py::arg("rois"), py::arg("output"), py::arg("argmax"),
        py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"));
  m.def("roi_pool_backward", &roi_pool_backward, "roi_pool backward",
        py::arg("grad_output"), py::arg("rois"), py::arg("argmax"),
        py::arg("grad_input"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"));
  m.def("sync_bn_forward_mean", &sync_bn_forward_mean, "sync_bn forward_mean",
        py::arg("input"), py::arg("mean"));
  m.def("sync_bn_forward_var", &sync_bn_forward_var, "sync_bn forward_var",
        py::arg("input"), py::arg("mean"), py::arg("var"));
  m.def("sync_bn_forward_output", &sync_bn_forward_output,
        "sync_bn forward_output", py::arg("input"), py::arg("mean"),
399
400
401
        py::arg("var"), py::arg("weight"), py::arg("bias"),
        py::arg("running_mean"), py::arg("running_var"), py::arg("norm"),
        py::arg("std"), py::arg("output"), py::arg("eps"), py::arg("momentum"),
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        py::arg("group_size"));
  m.def("sync_bn_backward_param", &sync_bn_backward_param,
        "sync_bn backward_param", py::arg("grad_output"), py::arg("norm"),
        py::arg("grad_weight"), py::arg("grad_bias"));
  m.def("sync_bn_backward_data", &sync_bn_backward_data,
        "sync_bn backward_data", py::arg("grad_output"), py::arg("weight"),
        py::arg("grad_weight"), py::arg("grad_bias"), py::arg("norm"),
        py::arg("std"), py::arg("grad_input"));
  m.def("psamask_forward", &psamask_forward, "PSAMASK forward (CPU/CUDA)",
        py::arg("input"), py::arg("output"), py::arg("psa_type"),
        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
        py::arg("half_w_mask"));
  m.def("psamask_backward", &psamask_backward, "PSAMASK backward (CPU/CUDA)",
        py::arg("grad_output"), py::arg("grad_input"), py::arg("psa_type"),
        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
        py::arg("half_w_mask"));
Jintao Lin's avatar
Jintao Lin committed
420
421
422
423
  m.def("tin_shift_forward", &tin_shift_forward, "tin_shift forward",
        py::arg("input"), py::arg("shift"), py::arg("output"));
  m.def("tin_shift_backward", &tin_shift_backward, "tin_shift backward",
        py::arg("grad_output"), py::arg("shift"), py::arg("grad_input"));
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
  m.def("bottom_pool_forward", &bottom_pool_forward, "Bottom Pool Forward",
        py::arg("input"), py::call_guard<py::gil_scoped_release>());
  m.def("bottom_pool_backward", &bottom_pool_backward, "Bottom Pool Backward",
        py::arg("input"), py::arg("grad_output"),
        py::call_guard<py::gil_scoped_release>());
  m.def("left_pool_forward", &left_pool_forward, "Left Pool Forward",
        py::arg("input"), py::call_guard<py::gil_scoped_release>());
  m.def("left_pool_backward", &left_pool_backward, "Left Pool Backward",
        py::arg("input"), py::arg("grad_output"),
        py::call_guard<py::gil_scoped_release>());
  m.def("right_pool_forward", &right_pool_forward, "Right Pool Forward",
        py::arg("input"), py::call_guard<py::gil_scoped_release>());
  m.def("right_pool_backward", &right_pool_backward, "Right Pool Backward",
        py::arg("input"), py::arg("grad_output"),
        py::call_guard<py::gil_scoped_release>());
  m.def("top_pool_forward", &top_pool_forward, "Top Pool Forward",
        py::arg("input"), py::call_guard<py::gil_scoped_release>());
  m.def("top_pool_backward", &top_pool_backward, "Top Pool Backward",
        py::arg("input"), py::arg("grad_output"),
        py::call_guard<py::gil_scoped_release>());
444
  m.def("box_iou_rotated", &box_iou_rotated, "IoU for rotated boxes",
445
        py::arg("boxes1"), py::arg("boxes2"), py::arg("ious"),
446
        py::arg("mode_flag"), py::arg("aligned"));
447
448
449
  m.def("nms_rotated", &nms_rotated, "NMS for rotated boxes", py::arg("dets"),
        py::arg("scores"), py::arg("order"), py::arg("dets_sorted"),
        py::arg("iou_threshold"), py::arg("multi_label"));
450
451
452
453
  m.def("ball_query_forward", &ball_query_forward, "ball_query_forward",
        py::arg("b"), py::arg("n"), py::arg("m"), py::arg("min_radius"),
        py::arg("max_radius"), py::arg("nsample"), py::arg("new_xyz_tensor"),
        py::arg("xyz_tensor"), py::arg("idx_tensor"));
454
455
456
457
458
459
460
461
462
463
  m.def("roi_align_rotated_forward", &roi_align_rotated_forward,
        "roi_align_rotated forward", py::arg("input"), py::arg("rois"),
        py::arg("output"), py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"), py::arg("sample_num"), py::arg("aligned"),
        py::arg("clockwise"));
  m.def("roi_align_rotated_backward", &roi_align_rotated_backward,
        "roi_align_rotated backward", py::arg("grad_output"), py::arg("rois"),
        py::arg("grad_input"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sample_num"), py::arg("aligned"), py::arg("clockwise"));
464
465
466
467
468
469
470
471
472
473
  m.def("ms_deform_attn_forward", &ms_deform_attn_forward,
        "forward function of multi-scale deformable attention",
        py::arg("value"), py::arg("value_spatial_shapes"),
        py::arg("value_level_start_index"), py::arg("sampling_locations"),
        py::arg("attention_weights"), py::arg("im2col_step"));
  m.def("ms_deform_attn_backward", &ms_deform_attn_backward,
        "backward function of multi-scale deformable attention",
        py::arg("value"), py::arg("value_spatial_shapes"),
        py::arg("value_level_start_index"), py::arg("sampling_locations"),
        py::arg("attention_weights"), py::arg("grad_output"),
pc's avatar
pc committed
474
475
        py::arg("grad_value"), py::arg("grad_sampling_loc"),
        py::arg("grad_attn_weight"), py::arg("im2col_step"));
476
477
478
479
480
481
482
  m.def("border_align_forward", &border_align_forward,
        "forward function of border_align", py::arg("input"), py::arg("boxes"),
        py::arg("output"), py::arg("argmax_idx"), py::arg("pool_size"));
  m.def("border_align_backward", &border_align_backward,
        "backward function of border_align", py::arg("grad_output"),
        py::arg("boxes"), py::arg("argmax_idx"), py::arg("grad_input"),
        py::arg("pool_size"));
483
484
  m.def("correlation_forward", &correlation_forward, "Correlation forward");
  m.def("correlation_backward", &correlation_backward, "Correlation backward");
485
}