test_iou3d.py 5.57 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
import numpy as np
import pytest
import torch

6
from mmcv.ops import boxes_iou3d, boxes_overlap_bev, nms3d, nms3d_normal
7
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
8
9


10
11
12
13
14
15
16
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
])
def test_boxes_overlap_bev(device):
17
18
19
20
21
22
23
24
25
26
27
28
29
    np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                            [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
                            [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]],
                           dtype=np.float32)
    np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2],
                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]],
                           dtype=np.float32)
    np_expect_overlaps = np.asarray(
        [[4.0, 4.0, (8 + 8 * 2**0.5) /
          (3 + 2 * 2**0.5)], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]],
        dtype=np.float32)

30
31
    boxes1 = torch.from_numpy(np_boxes1).to(device)
    boxes2 = torch.from_numpy(np_boxes2).to(device)
32
33
34
35
36
37
38
39
40
41
42

    # test for 3 boxes
    overlaps = boxes_overlap_bev(boxes1, boxes2)
    assert np.allclose(overlaps.cpu().numpy(), np_expect_overlaps, atol=1e-4)

    # test for many boxes
    boxes2 = boxes2.repeat_interleave(555, 0)

    overlaps = boxes_overlap_bev(boxes1, boxes2)
    assert np.allclose(
        overlaps.cpu().numpy(), np_expect_overlaps.repeat(555, 1), atol=1e-4)
43
44


45
46
47
48
49
50
51
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
])
def test_boxes_iou3d(device):
52
53
54
55
56
57
58
59
    np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                            [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
                            [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]],
                           dtype=np.float32)
    np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2],
                            [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]],
                           dtype=np.float32)
60
61
62
63
    np_expect_ious = np.asarray(
        [[1.0, 1.0, 1.0 / 2**0.5], [1.0 / 15, 1.0 / 15, 1.0 / 15],
         [0.0, 0.0, 0.0]],
        dtype=np.float32)
64

65
66
    boxes1 = torch.from_numpy(np_boxes1).to(device)
    boxes2 = torch.from_numpy(np_boxes2).to(device)
67

68
    ious = boxes_iou3d(boxes1, boxes2)
69
70
71
    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)


72
73
74
75
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
76
77
78
79
80
            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    pytest.param(
        'mlu',
        marks=pytest.mark.skipif(
            not IS_MLU_AVAILABLE, reason='requires MLU support'))
81
82
])
def test_nms3d(device):
83
84
85
86
87
88
89
90
    # test for 5 boxes
    np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                           [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3],
                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0],
                           [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]],
                          dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32)
91
92
93
    np_inds = np.array([1, 0, 3])
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)
94
    inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3)
95

96
    assert np.allclose(inds.cpu().numpy(), np_inds)
97

98
    # test for many boxes
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    # In the float data type calculation process, float will be converted to
    # double in CUDA kernel (https://github.com/open-mmlab/mmcv/blob
    # /master/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp#L61),
    # always use float in MLU kernel. The difference between the mentioned
    # above leads to different results.
    if device != 'mlu':
        np.random.seed(42)
        np_boxes = np.random.rand(555, 7).astype(np.float32)
        np_scores = np.random.rand(555).astype(np.float32)
        boxes = torch.from_numpy(np_boxes)
        scores = torch.from_numpy(np_scores)
        inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3)

        assert len(inds.cpu().numpy()) == 176
113

114

115
116
117
118
119
120
121
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
])
def test_nms3d_normal(device):
122
123
124
125
126
127
128
129
    # test for 5 boxes
    np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0],
                           [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0],
                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3],
                           [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0],
                           [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]],
                          dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32)
130
    np_inds = np.array([1, 0, 3])
131
132
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)
133
    inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3)
134

135
    assert np.allclose(inds.cpu().numpy(), np_inds)
136
137
138
139
140
141
142

    # test for many boxes
    np.random.seed(42)
    np_boxes = np.random.rand(555, 7).astype(np.float32)
    np_scores = np.random.rand(555).astype(np.float32)
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)
143
    inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3)
144
145

    assert len(inds.cpu().numpy()) == 148