test_hooks.py 8.75 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3
4
5
6

CommandLine:
    pytest tests/test_hooks.py
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
10
import sys
11
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
12
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13

14
15
16
17
18
import pytest
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

19
20
from mmcv.runner import (EpochBasedRunner, IterTimerHook, MlflowLoggerHook,
                         PaviLoggerHook, WandbLoggerHook)
Yawei Li's avatar
Yawei Li committed
21
from mmcv.runner.hooks.lr_updater import (CosineAnnealingLrUpdaterHook,
Harry's avatar
Harry committed
22
                                          CosineRestartLrUpdaterHook,
23
24
                                          CyclicLrUpdaterHook)
from mmcv.runner.hooks.momentum_updater import (
Yawei Li's avatar
Yawei Li committed
25
    CosineAnnealingMomentumUpdaterHook, CyclicMomentumUpdaterHook)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
26
27
28
29
30


def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
31
32
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
33
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
34
35
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
36
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
37
38

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
39
40
41
42
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
    }, 5)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
43
    hook.writer.add_snapshot_file.assert_called_with(
44
        tag=runner.work_dir.split('/')[-1],
Wenwei Zhang's avatar
Wenwei Zhang committed
45
        snapshot_file_path=osp.join(runner.work_dir, 'latest.pth'),
Jiangmiao Pang's avatar
Jiangmiao Pang committed
46
        iteration=5)
47
48


Wenwei Zhang's avatar
Wenwei Zhang committed
49
def test_momentum_runner_hook():
Kai Chen's avatar
Kai Chen committed
50
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
51
52
53
54
55
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
56
    hook = CyclicMomentumUpdaterHook(
Wenwei Zhang's avatar
Wenwei Zhang committed
57
58
59
60
61
62
63
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_hook(hook)

    # add momentum LR scheduler
64
    hook = CyclicLrUpdaterHook(
Wenwei Zhang's avatar
Wenwei Zhang committed
65
66
67
68
69
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
    runner.register_hook(hook)
70
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
71
72

    # add pavi hook
73
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
74
75
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
76
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01999999999999999,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.2,
            'momentum': 0.85
        }, 4),
        call('train', {
            'learning_rate': 0.155,
            'momentum': 0.875
        }, 6),
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


def test_cosine_runner_hook():
Kai Chen's avatar
Kai Chen committed
98
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
99
100
101
102
103
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Yawei Li's avatar
Yawei Li committed
104
    hook = CosineAnnealingMomentumUpdaterHook(
105
106
107
108
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
109
110
111
    runner.register_hook(hook)

    # add momentum LR scheduler
Yawei Li's avatar
Yawei Li committed
112
    hook = CosineAnnealingLrUpdaterHook(
Wenwei Zhang's avatar
Wenwei Zhang committed
113
114
        by_epoch=False, min_lr_ratio=0, warmup_iters=2, warmup_ratio=0.9)
    runner.register_hook(hook)
115
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
116
117

    # add pavi hook
118
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
119
120
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
121
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.97
        }, 5),
        call('train', {
            'learning_rate': 0.0004894348370484647,
            'momentum': 0.9890211303259032
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Harry's avatar
Harry committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def test_cosine_restart_lr_update_hook():
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
        runner.run([loader], [('train', 1)], 1)
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.0,
            'momentum': 0.95
        }, 5),
        call('train', {
            'learning_rate': 0.0009549150281252633,
            'momentum': 0.95
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


220
221
222
223
224
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
225
226
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
227

228
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
229
230
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
231
    shutil.rmtree(runner.work_dir)
232
233

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
234
235
236
237
238
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, step=5)
239
240
241
242
243
244
245
246
247
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
248
    runner = _build_demo_runner()
249
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
250
    loader = DataLoader(torch.ones((5, 2)))
251
252
253

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
254
255
    shutil.rmtree(runner.work_dir)

256
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
257
258
259
260
261
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
                                      step=5)
262
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
263
264
265


def _build_demo_runner():
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

Wenwei Zhang's avatar
Wenwei Zhang committed
284
285
286
287
288
289
290
    optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

291
    tmp_dir = tempfile.mkdtemp()
292
    runner = EpochBasedRunner(
Wenwei Zhang's avatar
Wenwei Zhang committed
293
        model=model,
294
295
296
        work_dir=tmp_dir,
        optimizer=optimizer,
        logger=logging.getLogger())
Wenwei Zhang's avatar
Wenwei Zhang committed
297
298
299

    runner.register_logger_hooks(log_config)
    return runner