test_riroi_align_rotated.py 3.64 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
7
import numpy as np
import pytest
import torch

from mmcv.ops import RiRoIAlignRotated

pc's avatar
pc committed
8
9
10
11
12
13
14
if torch.__version__ == 'parrots':
    from parrots.autograd import gradcheck
    _USING_PARROTS = True
else:
    from torch.autograd import gradcheck
    _USING_PARROTS = False

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
np_feature = np.array([[[[1, 2], [3, 4]], [[1, 2], [4, 3]], [[4, 3], [2, 1]],
                        [[1, 2], [5, 6]], [[3, 4], [7, 8]], [[9, 10], [13,
                                                                       14]],
                        [[11, 12], [15, 16]], [[1, 1], [2, 2]]]])
np_rois = np.array([[0., 0.5, 0.5, 1., 1., np.pi / 3],
                    [0., 1., 1., 3., 3., np.pi / 2]])
expect_output = np.array([[[[1.8425, 1.3516], [2.3151, 1.8241]],
                           [[2.4779, 1.7416], [3.2173, 2.5632]],
                           [[2.7149, 2.2638], [2.6540, 2.3673]],
                           [[2.9461, 2.8638], [2.8028, 2.7205]],
                           [[4.1943, 2.7214], [5.6119, 4.1391]],
                           [[7.5276, 6.0547], [8.9453, 7.4724]],
                           [[12.1943, 10.7214], [13.6119, 12.1391]],
                           [[9.5489, 8.4237], [10.5763, 9.4511]]],
                          [[[7.6562, 12.5625], [4.0000, 6.6250]],
                           [[1.0000, 1.3125], [0.5000, 0.6562]],
                           [[1.6562, 1.9375], [1.0000, 1.3125]],
                           [[1.8438, 2.0547], [0.7500, 1.1562]],
                           [[0.8438, 3.0625], [0.2500, 1.1875]],
                           [[2.6562, 2.5625], [1.5000, 1.6250]],
                           [[3.6562, 4.5625], [2.0000, 2.6250]],
                           [[6.6562, 10.5625], [3.5000, 5.6250]]]])

expect_grad = np.array([[[[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]],
                         [[1.4727, 1.5586], [1.5586, 1.6602]]]])

pool_h = 2
pool_w = 2
spatial_scale = 1.0
num_samples = 2
sampling_ratio = 2
num_orientations = 8
clockwise = False


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_roialign_rotated_gradcheck():
    x = torch.tensor(
        np_feature, dtype=torch.float, device='cuda', requires_grad=True)
    rois = torch.tensor(np_rois, dtype=torch.float, device='cuda')
    froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples,
                                 num_orientations, clockwise)
pc's avatar
pc committed
64
65
66
67
68
    if _USING_PARROTS:
        gradcheck(
            froipool, (x, rois), no_grads=[rois], delta=1e-3, pt_atol=1e-3)
    else:
        gradcheck(froipool, (x, rois), eps=1e-3, atol=1e-3)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_roialign_rotated_allclose():
    x = torch.tensor(
        np_feature, dtype=torch.float, device='cuda', requires_grad=True)
    rois = torch.tensor(np_rois, dtype=torch.float, device='cuda')
    froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples,
                                 num_orientations, clockwise)
    output = froipool(x, rois)
    output.backward(torch.ones_like(output))
    assert np.allclose(
        output.data.type(torch.float).cpu().numpy(), expect_output, atol=1e-3)
    assert np.allclose(
        x.grad.data.type(torch.float).cpu().numpy(), expect_grad, atol=1e-3)