"official/vision/image_classification/common_test.py" did not exist on "4909765543ff0c96627161ecc75eec6c309dbdce"
test_roiaware_pool3d.py 6.06 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.ops import (RoIAwarePool3d, points_in_boxes_all, points_in_boxes_cpu,
                      points_in_boxes_part)
limm's avatar
limm committed
8
9
10
11
12


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_RoIAwarePool3d():
13
14
15
16
17
18
19
    roiaware_pool3d_max = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='max')
    roiaware_pool3d_avg = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='avg')
    rois = torch.tensor(
        [[1.0, 2.0, 3.0, 5.0, 4.0, 6.0, -0.3 - np.pi / 2],
         [-10.0, 23.0, 16.0, 20.0, 10.0, 20.0, -0.5 - np.pi / 2]],
limm's avatar
limm committed
20
21
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
22
23
24
25
26
    pts = torch.tensor(
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
limm's avatar
limm committed
27
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate
28
29
30
31
32
33
    pts_feature = pts.clone()

    pooled_features_max = roiaware_pool3d_max(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_max.sum(),
limm's avatar
limm committed
34
                          torch.tensor(51.100).cuda(), 1e-3)
35
36
37
38
39

    pooled_features_avg = roiaware_pool3d_avg(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_avg.sum(),
limm's avatar
limm committed
40
                          torch.tensor(49.750).cuda(), 1e-3)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_points_in_boxes_part():
    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]],
         [[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (b, t, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2]],
         [[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5],
          [0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]],
        dtype=torch.float32).cuda()  # points (b, m, 3) in lidar coordinate

    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([2, 8])
    assert (point_indices == expected_point_indices).all()

    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
                         dtype=torch.float32).cuda()  # 30 degrees
    pts = torch.tensor(
        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
        dtype=torch.float32).cuda()
    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor([[-1, -1, 0, -1, 0, -1, -1, -1]],
                                          dtype=torch.int32).cuda()
    assert (point_indices == expected_point_indices).all()


def test_points_in_boxes_cpu():
    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32
    )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32)  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
        dtype=torch.int32)
    assert point_indices.shape == torch.Size([1, 15, 2])
    assert (point_indices == expected_point_indices).all()

    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
                         dtype=torch.float32)  # 30 degrees
    pts = torch.tensor(
        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
        dtype=torch.float32)
    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[0], [0], [1], [0], [1], [0], [0], [0]]], dtype=torch.int32)
    assert (point_indices == expected_point_indices).all()


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_points_in_boxes_all():

    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_all(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([1, 15, 2])
    assert (point_indices == expected_point_indices).all()