test_fused_bias_leakyrelu.py 1.31 KB
Newer Older
1
2
import pytest
import torch
3
4
5
6
7
8
9

_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck, gradgradcheck
    _USING_PARROTS = False
10
11


limm's avatar
limm committed
12
class TestFusedBiasLeakyReLU(object):
13
14
15

    @classmethod
    def setup_class(cls):
limm's avatar
limm committed
16
        if not torch.cuda.is_available():
17
            return
limm's avatar
limm committed
18
19
        cls.input_tensor = torch.randn((2, 2, 2, 2), requires_grad=True).cuda()
        cls.bias = torch.zeros(2, requires_grad=True).cuda()
20

limm's avatar
limm committed
21
22
    @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
    def test_gradient(self):
23
24

        from mmcv.ops import FusedBiasLeakyReLU
25
        if _USING_PARROTS:
limm's avatar
limm committed
26
27
28
29
30
            gradcheck(
                FusedBiasLeakyReLU(2).cuda(),
                self.input_tensor,
                delta=1e-4,
                pt_atol=1e-3)
31
32
        else:
            gradcheck(
limm's avatar
limm committed
33
                FusedBiasLeakyReLU(2).cuda(),
34
35
36
                self.input_tensor,
                eps=1e-4,
                atol=1e-3)
37

limm's avatar
limm committed
38
39
40
41
    @pytest.mark.skipif(
        not torch.cuda.is_available() or _USING_PARROTS,
        reason='requires cuda')
    def test_gradgradient(self):
42
43
44

        from mmcv.ops import FusedBiasLeakyReLU
        gradgradcheck(
limm's avatar
limm committed
45
            FusedBiasLeakyReLU(2).cuda(),
46
47
48
            self.input_tensor,
            eps=1e-4,
            atol=1e-3)