mmcv_ops_definition.md 26.9 KB
Newer Older
limm's avatar
limm committed
1
# Definition of custom operators in MMCV
2
3

<!-- TOC -->
limm's avatar
limm committed
4
- [Definition of custom operators in MMCV](#definition-of-custom-operators-in-mmcv)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  - [MMCVBorderAlign](#mmcvborderalign)
    - [Description](#description)
    - [Parameters](#parameters)
    - [Inputs](#inputs)
    - [Outputs](#outputs)
    - [Type Constraints](#type-constraints)
  - [MMCVCARAFE](#mmcvcarafe)
    - [Description](#description-1)
    - [Parameters](#parameters-1)
    - [Inputs](#inputs-1)
    - [Outputs](#outputs-1)
    - [Type Constraints](#type-constraints-1)
  - [MMCVCAWeight](#mmcvcaweight)
    - [Description](#description-2)
    - [Parameters](#parameters-2)
    - [Inputs](#inputs-2)
    - [Outputs](#outputs-2)
    - [Type Constraints](#type-constraints-2)
  - [MMCVCAMap](#mmcvcamap)
    - [Description](#description-3)
    - [Parameters](#parameters-3)
    - [Inputs](#inputs-3)
    - [Outputs](#outputs-3)
    - [Type Constraints](#type-constraints-3)
  - [MMCVCornerPool](#mmcvcornerpool)
    - [Description](#description-4)
    - [Parameters](#parameters-4)
    - [Inputs](#inputs-4)
    - [Outputs](#outputs-4)
    - [Type Constraints](#type-constraints-4)
  - [MMCVDeformConv2d](#mmcvdeformconv2d)
    - [Description](#description-5)
    - [Parameters](#parameters-5)
    - [Inputs](#inputs-5)
    - [Outputs](#outputs-5)
    - [Type Constraints](#type-constraints-5)
  - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
    - [Description](#description-6)
    - [Parameters](#parameters-6)
    - [Inputs](#inputs-6)
    - [Outputs](#outputs-6)
    - [Type Constraints](#type-constraints-6)
  - [MMCVDeformRoIPool](#mmcvdeformroipool)
    - [Description](#description-7)
    - [Parameters](#parameters-7)
    - [Inputs](#inputs-7)
    - [Outputs](#outputs-7)
    - [Type Constraints](#type-constraints-7)
  - [MMCVMaskedConv2d](#mmcvmaskedconv2d)
    - [Description](#description-8)
    - [Parameters](#parameters-8)
    - [Inputs](#inputs-8)
    - [Outputs](#outputs-8)
    - [Type Constraints](#type-constraints-8)
  - [MMCVPSAMask](#mmcvpsamask)
    - [Description](#description-9)
    - [Parameters](#parameters-9)
    - [Inputs](#inputs-9)
    - [Outputs](#outputs-9)
    - [Type Constraints](#type-constraints-9)
  - [NonMaxSuppression](#nonmaxsuppression)
    - [Description](#description-10)
    - [Parameters](#parameters-10)
    - [Inputs](#inputs-10)
    - [Outputs](#outputs-10)
    - [Type Constraints](#type-constraints-10)
  - [MMCVRoIAlign](#mmcvroialign)
    - [Description](#description-11)
    - [Parameters](#parameters-11)
    - [Inputs](#inputs-11)
    - [Outputs](#outputs-11)
    - [Type Constraints](#type-constraints-11)
  - [MMCVRoIAlignRotated](#mmcvroialignrotated)
    - [Description](#description-12)
    - [Parameters](#parameters-12)
    - [Inputs](#inputs-12)
    - [Outputs](#outputs-12)
    - [Type Constraints](#type-constraints-12)
limm's avatar
limm committed
83
84
- [torch](#torch)
  - [grid_sampler](#grid_sampler)
85
86
87
88
89
    - [Description](#description-13)
    - [Parameters](#parameters-13)
    - [Inputs](#inputs-13)
    - [Outputs](#outputs-13)
    - [Type Constraints](#type-constraints-13)
limm's avatar
limm committed
90
  - [cummax](#cummax)
91
92
93
94
95
    - [Description](#description-14)
    - [Parameters](#parameters-14)
    - [Inputs](#inputs-14)
    - [Outputs](#outputs-14)
    - [Type Constraints](#type-constraints-14)
limm's avatar
limm committed
96
  - [cummin](#cummin)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    - [Description](#description-15)
    - [Parameters](#parameters-15)
    - [Inputs](#inputs-15)
    - [Outputs](#outputs-15)
    - [Type Constraints](#type-constraints-15)
<!-- TOC -->

## MMCVBorderAlign

### Description

Applies `border_align` over the input feature based on predicted bboxes.

For each border line (e.g. top, left, bottom or right) of each box,
border_align does the following:

- uniformly samples `pool_size`+1 positions on this line, involving the start and end points.
- the corresponding features on these points are computed by bilinear interpolation.
- max pooling over all the `pool_size`+1 positions are used for computing pooled feature.

Read [BorderDet: Border Feature for Dense Object Detection](ttps://arxiv.org/abs/2007.11056) for more detailed information.

### Parameters

limm's avatar
limm committed
121
122
123
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
| `int`   | `pool_size`        | number of positions sampled over the boxes' borders(e.g. top, bottom, left, right). |
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Features with shape [N,4C,H,W]. Channels ranged in [0,C), [C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, right features respectively</dd>
<dt><tt>boxes</tt>: T</dt>
<dd>Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2).</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Pooled features with shape [N,C,H*W,4]. The order is(top,left,bottom,right) for the last dimension.</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVCARAFE

### Description

CARAFE operator performs feature upsampling.

Read [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188) for more detailed information.

### Parameters

limm's avatar
limm committed
155
156
157
158
159
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
| `int`   | `kernel_size`        | reassemble kernel size, should be odd integer|
| `int`   | `group_size`        | reassemble group size |
| `float`   | `scale_factor`        | upsample ratio(>=1) |
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

### Inputs

<dl>
<dt><tt>features</tt>: T</dt>
<dd>Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.</dd>
<dt><tt>masks</tt>: T</dt>
<dd>The input mask</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>The upsampled features. 4-D tensor of shape (N, C, H * scale_factor, W * scale_factor). N is the batch size.</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVCAWeight

### Description

Operator for Criss-Cross Attention
Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information.

### Parameters

limm's avatar
limm committed
190
191
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

### Inputs

<dl>
<dt><tt>t</tt>: T</dt>
<dd>The query matrix of shape (N, C', H, W).</dd>
<dt><tt>f</tt>: T</dt>
<dd>The key matrix of shape (N, C', H, W).</dd>
</dl>

### Outputs

<dl>
<dt><tt>weight</tt>: T</dt>
<dd>The attention map of shape (N, H+W-1, H, W).</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVCAMap

### Description

Operator for Criss-Cross Attention
Read [CCNet: Criss-Cross Attention for SemanticSegmentation](https://arxiv.org/pdf/1811.11721.pdf) for more detailed information.

### Parameters

limm's avatar
limm committed
222
223
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

### Inputs

<dl>
<dt><tt>weight</tt>: T</dt>
<dd>Output from the operator MMCVCAWeight.</dd>
<dt><tt>value</tt>: T</dt>
<dd>The value matrix of shape (N, C, H, W).</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output tensor of aggregated contextual information</dd>
</dl>

### Type Constraints

- T:tensor(float32)

limm's avatar
limm committed
245

246
247
248
249
250
251
252
253
## MMCVCornerPool

### Description

Perform CornerPool on `input` features. Read [CornerNet -- Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244) for more details.

### Parameters

limm's avatar
limm committed
254
255
256
| Type    | Parameter       | Description                                                      |
| ------- | --------------- | ---------------------------------------------------------------- |
| `int`   | `mode`          | corner pool mode, (0: `top`, 1: `bottom`, 2: `left`, 3: `right`) |
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>The pooled features. 4-D tensor of shape (N, C, H, W).</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVDeformConv2d

### Description

Applies a deformable 2D convolution over an input signal composed of several input planes.

Read [Deformable Convolutional Networks](https://arxiv.org/pdf/1703.06211.pdf) for detail.

### Parameters

limm's avatar
limm committed
286
287
288
289
290
291
292
293
294
| Type           | Parameter          | Description                                                                           |
| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
| `list of ints` | `stride`           | The stride of the convolving kernel, (sH, sW). Defaults to `(1, 1)`.                                        |
| `list of ints` | `padding`          | Paddings on both sides of the input, (padH, padW).  Defaults to `(0, 0)`.                                   |
| `list of ints` | `dilation`         | The spacing between kernel elements (dH, dW). Defaults to `(1, 1)`.                                      |
| `int`          | `groups`            | Split input into groups. `input_channel` should be divisible by the number of groups. Defaults to `1`.|
| `int`          | `deformable_groups` | Groups of deformable offset. Defaults to `1`.                                                         |
| `int`          | `bias` | Whether to add a learnable bias to the output. `0` stands for `False` and `1` stands for `True`. Defaults to `0`.                                                          |
| `int`          | `im2col_step` | Groups of deformable offset. Defaults to `32`.                                                         |
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>offset</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW is the height and width of offset and output.</dd>
<dt><tt>weight</tt>: T</dt>
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## MMCVModulatedDeformConv2d

### Description

Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.

### Parameters

limm's avatar
limm committed
326
327
328
329
330
| Type           | Parameter          | Description                                                                           |
| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
| `list of ints` | `stride`           | The stride of the convolving kernel. (sH, sW)                                         |
| `list of ints` | `padding`          | Paddings on both sides of the input. (padH, padW)                                     |
| `list of ints` | `dilation`         | The spacing between kernel elements. (dH, dW)                                         |
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
| `int`          | `deformable_groups` | Groups of deformable offset.                                                          |
| `int`          | `groups`            | Split input into groups. `input_channel` should be divisible by the number of groups. |

### Inputs

<dl>
<dt><tt>feature</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>offset</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd>
<dt><tt>mask</tt>: T</dt>
<dd>Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd>
<dt><tt>weight]</tt>: T</dt>
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
<dt><tt>bias</tt>: T, optional</dt>
<dd>Input bias; 1-D tensor of shape (output_channel).</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## MMCVDeformRoIPool

### Description

Deformable roi pooling layer

### Parameters

limm's avatar
limm committed
368
369
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
370
371
372
373
| `int`   | `output_height`  | height of output roi                                                                                          |
| `int`   | `output_width`   | width of output roi                                                                                           |
| `float` | `spatial_scale`  | used to scale the input boxes                                                                                 |
| `int`   | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
limm's avatar
limm committed
374
| `float`   | `gamma`        | gamma |
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
<dt><tt>rois</tt>: T</dt>
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
<dt><tt>offset</tt>: T</dt>
<dd>offset of height and width. Defaults to a tensor of zero</dd>
</dl>

### Outputs

<dl>
<dt><tt>feat</tt>: T</dt>
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVMaskedConv2d

### Description

Performs a masked 2D convolution from PixelRNN
Read [Pixel Recurrent Neural Networks](https://arxiv.org/abs/1601.06759) for more detailed information.

### Parameters

limm's avatar
limm committed
407
408
409
410
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
| `list of ints` | `stride`           | The stride of the convolving kernel. (sH, sW). **Only support stride=1 in mmcv**                                         |
| `list of ints` | `padding`          | Paddings on both sides of the input. (padH, padW). Defaults to `(0, 0)`.                                     |
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

### Inputs

<dl>
<dt><tt>features</tt>: T</dt>
<dd>Input features; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
<dt><tt>mask</tt>: T</dt>
<dd>Input mask; 3D tensor of shape (N, H, W)</dd>
<dt><tt>weight</tt>: T</dt>
<dd>The learnable weights of the module</dd>
<dt><tt>bias</tt>: T</dt>
<dd>The learnable bias of the module</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>The output convolved feature</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## MMCVPSAMask

### Description

An operator from PSANet.

Read [PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://hszhao.github.io/papers/eccv18_psanet.pdf) for more detailed information.

### Parameters

limm's avatar
limm committed
446
447
448
449
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
| `int`   | `psa_type`        | `0` means collect and `1` means `distribute` |
| `list of ints`   | `mask_size`        | The size of mask |
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input feature; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output tensor of shape (N, H * W, H, W)</dd>
</dl>

### Type Constraints

- T:tensor(float32)

## NonMaxSuppression

### Description

Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes.

Note this definition is slightly different with [onnx: NonMaxSuppression](https://github.com/onnx/onnx/blob/master/docs/Operators.md#nonmaxsuppression)

### Parameters

| Type    | Parameter                    | Description                                                                                                                          |
480
| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
limm's avatar
limm committed
481
| `int`   | `center_point_box`           | 0 - the box data is supplied as [y1, x1, y2, x2], 1-the box data is supplied as [x_center, y_center, width, height].                 |
482
| `int`   | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. |
limm's avatar
limm committed
483
| `float` | `iou_threshold`              | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0.                     |
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
| `float` | `score_threshold`            | The threshold for deciding when to remove boxes based on score.                                                                      |
| `int`   | `offset`                     | 0 or 1, boxes' width or height is (x2 - x1 + offset).                                                                                |

### Inputs

<dl>
<dt><tt>boxes</tt>: T</dt>
<dd>Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).</dd>
<dt><tt>scores</tt>: T</dt>
<dd>Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).</dd>
</dl>

### Outputs

<dl>
<dt><tt>indices</tt>: tensor(int32, Linear)</dt>
<dd>Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].</dd>
<dd>num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).</dd>
<dd>All invalid indices will be filled with -1.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## MMCVRoIAlign

### Description

Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.

### Parameters

| Type    | Parameter        | Description                                                                                                   |
518
| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
| `int`   | `output_height`  | height of output roi                                                                                          |
| `int`   | `output_width`   | width of output roi                                                                                           |
| `float` | `spatial_scale`  | used to scale the input boxes                                                                                 |
| `int`   | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `str`   | `mode`           | pooling mode in each bin. `avg` or `max`                                                                      |
| `int`   | `aligned`        | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly.         |

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
<dt><tt>rois</tt>: T</dt>
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
</dl>

### Outputs

<dl>
<dt><tt>feat</tt>: T</dt>
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
</dl>

### Type Constraints

- T:tensor(float32)

limm's avatar
limm committed
546

547
548
549
550
551
552
553
554
## MMCVRoIAlignRotated

### Description

Perform RoI align pooling for rotated proposals

### Parameters

limm's avatar
limm committed
555
556
| Type    | Parameter       | Description                                                    |
| ------- | --------------- | -------------------------------------------------------------- |
557
558
559
560
561
562
| `int`   | `output_height`  | height of output roi                                                                                          |
| `int`   | `output_width`   | width of output roi                                                                                           |
| `float` | `spatial_scale`  | used to scale the input boxes                                                                                 |
| `int`   | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `str`   | `mode`           | pooling mode in each bin. `avg` or `max`                                                                      |
| `int`   | `aligned`        | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly.         |
limm's avatar
limm committed
563
| `int`   | `clockwise`        | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly.         |
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

### Inputs

<dl>
<dt><tt>features</tt>: T</dt>
<dd>Input feature map; 4D tensor of shape (N, C, H, W)</dd>
<dt><tt>rois</tt>: T</dt>
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd>
</dl>

### Outputs

<dl>
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd>
</dl>

### Type Constraints

- T:tensor(float32)

limm's avatar
limm committed
584
585
586
# torch

## grid_sampler
587
588
589
590
591
592
593
594
595
596

### Description

Perform sample from `input` with pixel locations from `grid`.

Check [torch.nn.functional.grid_sample](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html?highlight=grid_sample#torch.nn.functional.grid_sample) for more information.

### Parameters

| Type  | Parameter            | Description                                                                                                                                                                                                                                                                                     |
597
| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`)                                                                                                                                                                                                                   |
| `int` | `padding_mode`       | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`)                                                                                                                                                                                                                |
| `int` | `align_corners`      | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>grid</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output. </dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, C, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

limm's avatar
limm committed
622
## cummax
623
624
625
626
627
628
629

### Description

Returns a tuple (`values`, `indices`) where `values` is the cumulative maximum elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. Read [torch.cummax](https://pytorch.org/docs/stable/generated/torch.cummax.html) for more details.

### Parameters

limm's avatar
limm committed
630
631
632
| Type    | Parameter       | Description                                                      |
| ------- | --------------- | ---------------------------------------------------------------- |
| `int`   | `dim`           | the dimension to do the operation over                           |
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>The input tensor with various shapes. Tensor with empty element is also supported.</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output the cumulative maximum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.</dd>
<dt><tt>indices</tt>: tensor(int64)</dt>
<dd>Output the index location of each cumulative maximum value found in the dimension `dim`, with the same shape as `input`.</dd>
</dl>

### Type Constraints

- T:tensor(float32)

limm's avatar
limm committed
654
## cummin
655
656
657
658
659
660
661

### Description

Returns a tuple (`values`, `indices`) where `values` is the cumulative minimum elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. Read [torch.cummin](https://pytorch.org/docs/stable/generated/torch.cummin.html) for more details.

### Parameters

limm's avatar
limm committed
662
663
664
| Type    | Parameter       | Description                                                      |
| ------- | --------------- | ---------------------------------------------------------------- |
| `int`   | `dim`           | the dimension to do the operation over                           |
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>The input tensor with various shapes. Tensor with empty element is also supported.</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>Output the cumulative minimum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.</dd>
<dt><tt>indices</tt>: tensor(int64)</dt>
<dd>Output the index location of each cumulative minimum value found in the dimension `dim`, with the same shape as `input`.</dd>
</dl>

### Type Constraints

- T:tensor(float32)