test_parallel.py 4.86 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
3
from unittest.mock import MagicMock, patch

4
import pytest
5
import torch
Kai Chen's avatar
Kai Chen committed
6
7
8
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel

Harry's avatar
Harry committed
9
10
from mmcv.parallel import (MODULE_WRAPPERS, MMDataParallel,
                           MMDistributedDataParallel, is_module_wrapper)
11
from mmcv.parallel._functions import Scatter, get_input_device, scatter
Kai Chen's avatar
Kai Chen committed
12
13
14
15
from mmcv.parallel.distributed_deprecated import \
    MMDistributedDataParallel as DeprecatedMMDDP


Kai Chen's avatar
Kai Chen committed
16
17
18
19
20
21
def mock(*args, **kwargs):
    pass


@patch('torch.distributed._broadcast_coalesced', mock)
@patch('torch.distributed.broadcast', mock)
22
@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
Harry's avatar
Harry committed
23
def test_is_module_wrapper():
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
30
31
32
33

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(2, 2, 1)

        def forward(self, x):
            return self.conv(x)

34
    # _verify_model_across_ranks is added in torch1.9.0 so we should check
35
    # whether _verify_model_across_ranks is the member of torch.distributed
36
37
38
39
    # before mocking
    if hasattr(torch.distributed, '_verify_model_across_ranks'):
        torch.distributed._verify_model_across_ranks = mock

Kai Chen's avatar
Kai Chen committed
40
    model = Model()
Harry's avatar
Harry committed
41
    assert not is_module_wrapper(model)
Kai Chen's avatar
Kai Chen committed
42
43

    dp = DataParallel(model)
Harry's avatar
Harry committed
44
    assert is_module_wrapper(dp)
Kai Chen's avatar
Kai Chen committed
45
46

    mmdp = MMDataParallel(model)
Harry's avatar
Harry committed
47
    assert is_module_wrapper(mmdp)
Kai Chen's avatar
Kai Chen committed
48
49

    ddp = DistributedDataParallel(model, process_group=MagicMock())
Harry's avatar
Harry committed
50
    assert is_module_wrapper(ddp)
Kai Chen's avatar
Kai Chen committed
51
52

    mmddp = MMDistributedDataParallel(model, process_group=MagicMock())
Harry's avatar
Harry committed
53
    assert is_module_wrapper(mmddp)
Kai Chen's avatar
Kai Chen committed
54
55

    deprecated_mmddp = DeprecatedMMDDP(model)
Harry's avatar
Harry committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    assert is_module_wrapper(deprecated_mmddp)

    # test module wrapper registry
    @MODULE_WRAPPERS.register_module()
    class ModuleWrapper(object):

        def __init__(self, module):
            self.module = module

        def forward(self, *args, **kwargs):
            return self.module(*args, **kwargs)

    module_wraper = ModuleWrapper(model)
    assert is_module_wrapper(module_wraper)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149


def test_get_input_device():
    # if the device is CPU, return -1
    input = torch.zeros([1, 3, 3, 3])
    assert get_input_device(input) == -1
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    assert get_input_device(inputs) == -1

    # if the device is GPU, return the index of device
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3]).cuda()
        assert get_input_device(input) == 0
        inputs = [
            torch.zeros([1, 3, 3, 3]).cuda(),
            torch.zeros([1, 4, 4, 4]).cuda()
        ]
        assert get_input_device(inputs) == 0

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        get_input_device(5)


def test_scatter():
    # if the device is CPU, just return the input
    input = torch.zeros([1, 3, 3, 3])
    output = scatter(input=input, devices=[-1])
    assert torch.allclose(input, output)

    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = scatter(input=inputs, devices=[-1])
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3])
        output = scatter(input=input, devices=[0])
        assert torch.allclose(input.cuda(), output)

        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = scatter(input=inputs, devices=[0])
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output)

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        scatter(5, [-1])


def test_Scatter():
    # if the device is CPU, just return the input
    target_gpus = [-1]
    input = torch.zeros([1, 3, 3, 3])
    outputs = Scatter.forward(target_gpus, input)
    assert isinstance(outputs, tuple)
    assert torch.allclose(input, outputs[0])

    target_gpus = [-1]
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = Scatter.forward(target_gpus, inputs)
    assert isinstance(outputs, tuple)
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        target_gpus = [0]
        input = torch.zeros([1, 3, 3, 3])
        outputs = Scatter.forward(target_gpus, input)
        assert isinstance(outputs, tuple)
        assert torch.allclose(input.cuda(), outputs[0])

        target_gpus = [0]
        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = Scatter.forward(target_gpus, inputs)
        assert isinstance(outputs, tuple)
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output[0])