test_tin_shift.py 9.27 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Jintao Lin's avatar
Jintao Lin committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import os

import numpy as np
import pytest
import torch

_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck

    _USING_PARROTS = False

cur_dir = os.path.dirname(os.path.abspath(__file__))

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
inputs = ([[[[0.88572276, 0.46422583], [0.97408265, 0.59547687],
             [0.030812204, 0.96236038], [0.75418317, 0.44058233],
             [0.33279222, 0.00084149837], [0.7069388, 0.23255438],
             [0.13547045, 0.81549376], [0.40174931, 0.36317211]],
            [[0.57444429, 0.15905505], [0.39897251, 0.25790238],
             [0.93282568, 0.18451685], [0.92526674, 0.18283755],
             [0.31664443, 0.59323865], [0.1957739, 0.42505842],
             [0.081158757, 0.81340349], [0.43456328, 0.30195212]],
            [[0.8198145, 0.05990988], [0.98062474, 0.34803438],
             [0.10412294, 0.37183142], [0.15021622, 0.038857818],
             [0.40985721, 0.42253625], [0.71150124, 0.59778064],
             [0.83851069, 0.15194464], [0.097513378, 0.74820143]],
            [[0.80680406, 0.49327564], [0.17821097, 0.12980539],
             [0.50657678, 0.14446253], [0.04178369, 0.53071898],
             [0.84983683, 0.3826949], [0.32193625, 0.91275406],
             [0.75628334, 0.52934098], [0.27994192, 0.3053292]]],
           [[[0.082397044, 0.4210068], [0.23563534, 0.7938987],
             [0.63669145, 0.69397897], [0.8844561, 0.97854084],
             [0.79027033, 0.60640401], [0.63528901, 0.72172403],
             [0.0097346902, 0.70800996], [0.87891227, 0.13674974]],
            [[0.74329448, 0.0243572], [0.82178867, 0.85750699],
             [0.7568835, 0.73146772], [0.5031184, 0.30479157],
             [0.28713053, 0.47414285], [0.4682079, 0.067471564],
             [0.48368263, 0.14590704], [0.25397325, 0.19946373]],
            [[0.4291026, 0.068739474], [0.7159555, 0.79903615],
             [0.76412082, 0.85348046], [0.081224024, 0.82264912],
             [0.97173303, 0.24291694], [0.48957139, 0.43488795],
             [0.67382395, 0.21889746], [0.36712623, 0.67127824]],
            [[0.12054044, 0.18096751], [0.86675781, 0.54755616],
             [0.68208277, 0.15164375], [0.79991871, 0.80811197],
             [0.85256428, 0.68253738], [0.185983, 0.95642138],
             [0.48102546, 0.28009653], [0.35726011, 0.58168036]]]])
Jintao Lin's avatar
Jintao Lin committed
50
51
52

shifts = [([[1, 0, 1, -2], [-2, 1, -1, 1]]), ([[2, 1, 2, -1], [-1, 2, 0, 2]])]

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
outputs = [([[[[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]],
              [[0.81981, 0.05991], [0.98062, 0.34803], [0.50658, 0.14446],
               [0.041784, 0.53072], [0.40986, 0.42254], [0.7115, 0.59778],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]],
              [[0.0, 0.0], [0.0, 0.0], [0.76412, 0.85348], [0.081224, 0.82265],
               [0.0, 0.0], [0.0, 0.0], [0.67382, 0.2189], [0.36713,
                                                           0.67128]]]]),
           ([[[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
               [0.0, 0.0], [0.081159, 0.8134], [0.43456, 0.30195]],
              [[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.74329, 0.024357], [0.82179, 0.85751], [0.0, 0.0], [0.0, 0.0],
               [0.79027, 0.6064], [0.63529, 0.72172], [0.0, 0.0], [0.0, 0.0]],
              [[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]]]])]

grads = [
    [[[[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]]]],
    [[[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]]]]
]
Jintao Lin's avatar
Jintao Lin committed
132
133
134
135
136
137


def _test_tinshift_gradcheck(dtype):
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
138
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    if dtype == torch.half:
        pytest.skip('"add_cpu/sub_cpu" not implemented for Half')

    for shift in shifts:
        np_input = np.array(inputs)
        np_shift = np.array(shift)

        x = torch.tensor(
            np_input, dtype=dtype, device='cuda', requires_grad=True)
        shift = torch.tensor(np_shift, device='cuda').int()
        if torch.__version__ == 'parrots':
            gradcheck(tin_shift, (x, shift))
        else:
            gradcheck(tin_shift, (x, shift), atol=1, rtol=0.1)


def _test_tinshift_allclose(dtype):
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
160
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    for shift, output, grad in zip(shifts, outputs, grads):
        np_input = np.array(inputs)
        np_shift = np.array(shift)
        np_output = np.array(output)
        np_grad = np.array(grad)

        x = torch.tensor(
            np_input, dtype=dtype, device='cuda', requires_grad=True)
        shift = torch.tensor(np_shift, device='cuda').int()

        output = tin_shift(x, shift)
        output.backward(torch.ones_like(output))
        assert np.allclose(
            output.data.type(torch.float).cpu().numpy(), np_output, 1e-3)
        assert np.allclose(
            x.grad.data.type(torch.float).cpu().numpy(), np_grad, 1e-3)


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def _test_tinshift_assert(dtype):
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
        pytest.skip('TINShift op is not successfully compiled')

    inputs = [torch.rand(2, 3, 4, 2), torch.rand(2, 3, 4, 2)]
    shifts = [torch.rand(2, 3), torch.rand(2, 5)]

    for x, shift in zip(inputs, shifts):
        x = x.cuda()
        shift = shift.cuda()

        # A ValueError should be raised if ops get inputs with wrong shapes.
        with pytest.raises(ValueError):
            tin_shift(x, shift)


Jintao Lin's avatar
Jintao Lin committed
198
199
200
201
202
203
@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('dtype', [torch.float, torch.double, torch.half])
def test_tinshift(dtype):
    _test_tinshift_allclose(dtype=dtype)
    _test_tinshift_gradcheck(dtype=dtype)
204
    _test_tinshift_assert(dtype=dtype)