tensorrt_custom_ops.md 16.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# TensorRT Custom Ops

<!-- TOC -->

- [TensorRT Custom Ops](#tensorrt-custom-ops)
  - [MMCVRoIAlign](#mmcvroialign)
    - [Description](#description)
    - [Parameters](#parameters)
    - [Inputs](#inputs)
    - [Outputs](#outputs)
    - [Type Constraints](#type-constraints)
  - [ScatterND](#scatternd)
    - [Description](#description-1)
    - [Parameters](#parameters-1)
    - [Inputs](#inputs-1)
    - [Outputs](#outputs-1)
    - [Type Constraints](#type-constraints-1)
  - [NonMaxSuppression](#nonmaxsuppression)
    - [Description](#description-2)
    - [Parameters](#parameters-2)
    - [Inputs](#inputs-2)
    - [Outputs](#outputs-2)
    - [Type Constraints](#type-constraints-2)
  - [MMCVDeformConv2d](#mmcvdeformconv2d)
    - [Description](#description-3)
    - [Parameters](#parameters-3)
    - [Inputs](#inputs-3)
    - [Outputs](#outputs-3)
    - [Type Constraints](#type-constraints-3)
  - [grid_sampler](#grid_sampler)
    - [Description](#description-4)
    - [Parameters](#parameters-4)
    - [Inputs](#inputs-4)
    - [Outputs](#outputs-4)
    - [Type Constraints](#type-constraints-4)
36
37
38
39
40
41
42
43
44
45
46
47
  - [cummax](#cummax)
    - [Description](#description-5)
    - [Parameters](#parameters-5)
    - [Inputs](#inputs-5)
    - [Outputs](#outputs-5)
    - [Type Constraints](#type-constraints-5)
  - [cummin](#cummin)
    - [Description](#description-6)
    - [Parameters](#parameters-6)
    - [Inputs](#inputs-6)
    - [Outputs](#outputs-6)
    - [Type Constraints](#type-constraints-6)
48
49
50
51
52
53
  - [MMCVInstanceNormalization](#mmcvinstancenormalization)
    - [Description](#description-7)
    - [Parameters](#parameters-7)
    - [Inputs](#inputs-7)
    - [Outputs](#outputs-7)
    - [Type Constraints](#type-constraints-7)
54
55
56
57
58
59
  - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
    - [Description](#description-8)
    - [Parameters](#parameters-8)
    - [Inputs](#inputs-8)
    - [Outputs](#outputs-8)
    - [Type Constraints](#type-constraints-8)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

<!-- TOC -->

## MMCVRoIAlign

### Description

Perform RoIAlign on output feature, used in bbox_head of most two stage
detectors.

### Parameters

| Type    | Parameter        | Description                                                                                                   |
| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
| `int`   | `output_height`  | height of output roi                                                                                          |
| `int`   | `output_width`   | width of output roi                                                                                           |
| `float` | `spatial_scale`  | used to scale the input boxes                                                                                 |
| `int`   | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `str`   | `mode`           | pooling mode in each bin. `avg` or `max`                                                                      |
| `int`   | `aligned`        | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly.         |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd>
<dt><tt>inputs[1]</tt>: T</dt>
<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].<dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## ScatterND

### Description

ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported.

The `output` is calculated via the following equation:

```python
  output = np.copy(data)
  update_indices = indices.shape[:-1]
  for idx in np.ndindex(update_indices):
      output[indices[idx]] = updates[idx]
```

### Parameters

None

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Tensor of rank r>=1.</dd>

<dt><tt>inputs[1]</tt>: tensor(int32, Linear)</dt>
<dd>Tensor of rank q>=1.</dd>

<dt><tt>inputs[2]</tt>: T</dt>
<dd>Tensor of rank q + r - indices_shape[-1] - 1.</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Tensor of rank r >= 1.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear), tensor(int32, Linear)

## NonMaxSuppression

### Description

Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. Indices of invalid boxes will be filled with -1.

### Parameters

| Type    | Parameter                    | Description                                                                                                                          |
| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
| `int`   | `center_point_box`           | 0 - the box data is supplied as [y1, x1, y2, x2], 1-the box data is supplied as [x_center, y_center, width, height].                 |
| `int`   | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. |
| `float` | `iou_threshold`              | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0.                     |
| `float` | `score_threshold`            | The threshold for deciding when to remove boxes based on score.                                                                      |
| `int`   | `offset`                     | 0 or 1, boxes' width or height is (x2 - x1 + offset).                                                                                |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).</dd>
<dt><tt>inputs[1]</tt>: T</dt>
<dd>Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: tensor(int32, Linear)</dt>
<dd>Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].</dd>
<dd>num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).</dd>
<dd>All invalid indices will be filled with -1.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## MMCVDeformConv2d

### Description

Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail.

### Parameters

| Type           | Parameter          | Description                                                                                                                       |
| -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- |
| `list of ints` | `stride`           | The stride of the convolving kernel. (sH, sW)                                                                                     |
| `list of ints` | `padding`          | Paddings on both sides of the input. (padH, padW)                                                                                 |
| `list of ints` | `dilation`         | The spacing between kernel elements. (dH, dW)                                                                                     |
| `int`          | `deformable_group` | Groups of deformable offset.                                                                                                      |
| `int`          | `group`            | Split input into groups. `input_channel` should be divisible by the number of groups.                                             |
| `int`          | `im2col_step`      | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>inputs[1]</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.</dd>
<dt><tt>inputs[2]</tt>: T</dt>
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## grid_sampler

### Description

Perform sample from `input` with pixel locations from `grid`.

### Parameters

| Type  | Parameter            | Description                                                                                                                                                                                                                                                                                     |
| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`)                                                                                                                                                                                                                   |
| `int` | `padding_mode`       | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`)                                                                                                                                                                                                                |
| `int` | `align_corners`      | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>inputs[1]</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output. </dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, C, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

## cummax

### Description

Returns a namedtuple (`values`, `indices`) where `values` is the cumulative maximum of elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`.

### Parameters

| Type  | Parameter | Description                             |
| ----- | --------- | --------------------------------------- |
| `int` | `dim`     | The dimension to do the operation over. |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>The input tensor.</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output values.</dd>
<dt><tt>outputs[1]</tt>: (int32, Linear)</dt>
<dd>Output indices.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)

## cummin

### Description

Returns a namedtuple (`values`, `indices`) where `values` is the cumulative minimum of elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`.

### Parameters

| Type  | Parameter | Description                             |
| ----- | --------- | --------------------------------------- |
| `int` | `dim`     | The dimension to do the operation over. |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>The input tensor.</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output values.</dd>
<dt><tt>outputs[1]</tt>: (int32, Linear)</dt>
<dd>Output indices.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

## MMCVInstanceNormalization

### Description

Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.

y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel.

### Parameters

| Type    | Parameter | Description                                                          |
| ------- | --------- | -------------------------------------------------------------------- |
| `float` | `epsilon` | The epsilon value to use to avoid division by zero. Default is 1e-05 |

### Inputs

<dl>
<dt><tt>input</tt>: T</dt>
<dd>Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.</dd>
<dt><tt>scale</tt>: T</dt>
<dd>The input 1-dimensional scale tensor of size C.</dd>
<dt><tt>B</tt>: T</dt>
<dd>The input 1-dimensional bias tensor of size C.</dd>
</dl>

### Outputs

<dl>
<dt><tt>output</tt>: T</dt>
<dd>The output tensor of the same shape as input.</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

## MMCVModulatedDeformConv2d

### Description

Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.

### Parameters

| Type           | Parameter          | Description                                                                           |
| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
| `list of ints` | `stride`           | The stride of the convolving kernel. (sH, sW)                                         |
| `list of ints` | `padding`          | Paddings on both sides of the input. (padH, padW)                                     |
| `list of ints` | `dilation`         | The spacing between kernel elements. (dH, dW)                                         |
| `int`          | `deformable_group` | Groups of deformable offset.                                                          |
| `int`          | `group`            | Split input into groups. `input_channel` should be divisible by the number of groups. |

### Inputs

<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd>
<dt><tt>inputs[1]</tt>: T</dt>
<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.</dd>
<dt><tt>inputs[2]</tt>: T</dt>
<dd>Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.</dd>
<dt><tt>inputs[3]</tt>: T</dt>
<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd>
<dt><tt>inputs[4]</tt>: T, optional</dt>
<dd>Input weight; 1-D tensor of shape (output_channel).</dd>
</dl>

### Outputs

<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd>
</dl>

### Type Constraints

- T:tensor(float32, Linear)