test_syncbn.py 4.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import re

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn


class TestSyncBN(object):

    def dist_init(self):
        rank = int(os.environ['SLURM_PROCID'])
        world_size = int(os.environ['SLURM_NTASKS'])
        local_rank = int(os.environ['SLURM_LOCALID'])
        node_list = str(os.environ['SLURM_NODELIST'])

        node_parts = re.findall('[0-9]+', node_list)
        host_ip = '{}.{}.{}.{}'.format(node_parts[1], node_parts[2],
                                       node_parts[3], node_parts[4])
        port = '12341'
        init_method = 'tcp://{}:{}'.format(host_ip, port)

        dist.init_process_group(
            'nccl', init_method=init_method, world_size=world_size, rank=rank)
        torch.cuda.set_device(local_rank)

    def _test_syncbn_train(self, size=1, half=False):

        if 'SLURM_NTASKS' not in os.environ or int(
                os.environ['SLURM_NTASKS']) != 4:
            print('must run with slurm has 4 processes!\n'
                  'srun -p test --gres=gpu:4 -n4')
            return
        else:
            print('Running syncbn test')
        from mmcv.ops import SyncBatchNorm

        assert size in (1, 2, 4)
        if not dist.is_initialized():
            self.dist_init()
        rank = dist.get_rank()

        torch.manual_seed(9)
        torch.cuda.manual_seed(9)

        self.x = torch.rand(16, 3, 2, 3).cuda()
        self.y_bp = torch.rand(16, 3, 2, 3).cuda()

        if half:
            self.x = self.x.half()
            self.y_bp = self.y_bp.half()
        dist.broadcast(self.x, src=0)
        dist.broadcast(self.y_bp, src=0)

        torch.cuda.synchronize()
        if size == 1:
            groups = [None, None, None, None]
            groups[0] = dist.new_group([0])
            groups[1] = dist.new_group([1])
            groups[2] = dist.new_group([2])
            groups[3] = dist.new_group([3])
            group = groups[rank]
        elif size == 2:
            groups = [None, None, None, None]
            groups[0] = groups[1] = dist.new_group([0, 1])
            groups[2] = groups[3] = dist.new_group([2, 3])
            group = groups[rank]
        elif size == 4:
            group = dist.group.WORLD
        syncbn = SyncBatchNorm(3, group=group).cuda()
        syncbn.weight.data[0] = 0.2
        syncbn.weight.data[1] = 0.5
        syncbn.weight.data[2] = 0.7
        syncbn.train()

        bn = nn.BatchNorm2d(3).cuda()
        bn.weight.data[0] = 0.2
        bn.weight.data[1] = 0.5
        bn.weight.data[2] = 0.7
        bn.train()

        sx = self.x[rank * 4:rank * 4 + 4]
        sx.requires_grad_()
        sy = syncbn(sx)
        sy.backward(self.y_bp[rank * 4:rank * 4 + 4])

        smean = syncbn.running_mean
        svar = syncbn.running_var
        sx_grad = sx.grad
        sw_grad = syncbn.weight.grad
        sb_grad = syncbn.bias.grad

        if size == 1:
            x = self.x[rank * 4:rank * 4 + 4]
            y_bp = self.y_bp[rank * 4:rank * 4 + 4]
        elif size == 2:
            x = self.x[rank // 2 * 8:rank // 2 * 8 + 8]
            y_bp = self.y_bp[rank // 2 * 8:rank // 2 * 8 + 8]
        elif size == 4:
            x = self.x
            y_bp = self.y_bp
        x.requires_grad_()
        y = bn(x)
        y.backward(y_bp)

        if size == 2:
            y = y[rank % 2 * 4:rank % 2 * 4 + 4]
        elif size == 4:
            y = y[rank * 4:rank * 4 + 4]

        mean = bn.running_mean
        var = bn.running_var
        if size == 1:
            x_grad = x.grad
            w_grad = bn.weight.grad
            b_grad = bn.bias.grad
        elif size == 2:
            x_grad = x.grad[rank % 2 * 4:rank % 2 * 4 + 4]
            w_grad = bn.weight.grad / 2
            b_grad = bn.bias.grad / 2
        elif size == 4:
            x_grad = x.grad[rank * 4:rank * 4 + 4]
            w_grad = bn.weight.grad / 4
            b_grad = bn.bias.grad / 4

        assert np.allclose(mean.data.cpu().numpy(),
                           smean.data.cpu().numpy(), 1e-3)
        assert np.allclose(var.data.cpu().numpy(),
                           svar.data.cpu().numpy(), 1e-3)
        assert np.allclose(y.data.cpu().numpy(), sy.data.cpu().numpy(), 1e-3)
        assert np.allclose(w_grad.data.cpu().numpy(),
                           sw_grad.data.cpu().numpy(), 1e-3)
        assert np.allclose(b_grad.data.cpu().numpy(),
                           sb_grad.data.cpu().numpy(), 1e-3)
        assert np.allclose(x_grad.data.cpu().numpy(),
                           sx_grad.data.cpu().numpy(), 1e-2)

    def test_syncbn_1(self):
        self._test_syncbn_train(size=1)

    def test_syncbn_2(self):
        self._test_syncbn_train(size=2)

    def test_syncbn_4(self):
        self._test_syncbn_train(size=4)

    def test_syncbn_1_half(self):
        self._test_syncbn_train(size=1, half=True)

    def test_syncbn_2_half(self):
        self._test_syncbn_train(size=2, half=True)

    def test_syncbn_4_half(self):
        self._test_syncbn_train(size=4, half=True)