test_weight_init.py 14.7 KB
Newer Older
1
# Copyright (c) Open-MMLab. All rights reserved.
2
3
from tempfile import TemporaryDirectory

4
5
6
7
8
import numpy as np
import pytest
import torch
from torch import nn

9
10
11
12
13
from mmcv.cnn import (Caffe2XavierInit, ConstantInit, KaimingInit, NormalInit,
                      PretrainedInit, UniformInit, XavierInit,
                      bias_init_with_prob, caffe2_xavier_init, constant_init,
                      initialize, kaiming_init, normal_init, uniform_init,
                      xavier_init)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


def test_constant_init():
    conv_module = nn.Conv2d(3, 16, 3)
    constant_init(conv_module, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))
    assert conv_module.bias.allclose(torch.zeros_like(conv_module.bias))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    constant_init(conv_module_no_bias, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))


def test_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    xavier_init(conv_module, bias=0.1)
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    xavier_init(conv_module, distribution='uniform')
    # TODO: sanity check of weight distribution, e.g. mean, std
    with pytest.raises(AssertionError):
        xavier_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    xavier_init(conv_module_no_bias)


def test_normal_init():
    conv_module = nn.Conv2d(3, 16, 3)
    normal_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    normal_init(conv_module_no_bias)
    # TODO: sanity check distribution, e.g. mean, std


def test_uniform_init():
    conv_module = nn.Conv2d(3, 16, 3)
    uniform_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    uniform_init(conv_module_no_bias)


def test_kaiming_init():
    conv_module = nn.Conv2d(3, 16, 3)
    kaiming_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    kaiming_init(conv_module, distribution='uniform')
    with pytest.raises(AssertionError):
        kaiming_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    kaiming_init(conv_module_no_bias)


def test_caffe_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    caffe2_xavier_init(conv_module)


def test_bias_init_with_prob():
    conv_module = nn.Conv2d(3, 16, 3)
    prior_prob = 0.1
    normal_init(conv_module, bias=bias_init_with_prob(0.1))
    # TODO: sanity check of weight distribution, e.g. mean, std
    bias = float(-np.log((1 - prior_prob) / prior_prob))
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, bias))
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


def test_constaninit():
    """test ConstantInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = ConstantInit(val=1, bias=2, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))

    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 1.))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = ConstantInit(val=3, bias_prob=0.01, layer='Linear')
    func(model)
    res = bias_init_with_prob(0.01)

    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test bias input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias='1')
    # test bias_prob type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias_prob='1')
    # test layer input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, layer=1)


def test_xavierinit():
    """test XavierInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert model[0].bias.allclose(torch.full_like(model[2].bias, 0.1))
    assert not model[2].bias.allclose(torch.full_like(model[0].bias, 0.1))

125
126
    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    func = XavierInit(gain=100, bias_prob=0.01, layer=['Conv2d', 'Linear'])
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    res = bias_init_with_prob(0.01)
    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, res))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test bias input type
    with pytest.raises(TypeError):
        func = XavierInit(bias='0.1', layer='Conv2d')
    # test layer inpur type
    with pytest.raises(TypeError):
        func = XavierInit(bias=0.1, layer=1)


def test_normalinit():
    """test Normalinit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))

154
    func = NormalInit(mean=100, std=1e-5, bias=200, layer=['Conv2d', 'Linear'])
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    func(model)
    assert model[0].weight.allclose(torch.tensor(100.))
    assert model[2].weight.allclose(torch.tensor(100.))
    assert model[0].bias.allclose(torch.tensor(200.))
    assert model[2].bias.allclose(torch.tensor(200.))

    func = NormalInit(
        mean=300, std=1e-5, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    res = bias_init_with_prob(0.01)
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert model[0].bias.allclose(torch.tensor(res))
    assert model[2].bias.allclose(torch.tensor(res))


def test_uniforminit():
    """"test UniformInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
174
    func = UniformInit(a=1, b=1, bias=2, layer=['Conv2d', 'Linear'])
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = UniformInit(a=100, b=100, layer=['Conv2d', 'Linear'], bias=10)
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape,
                                                   100.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape,
                                                   100.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))


def test_kaiminginit():
    """test KaimingInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = KaimingInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))

199
200
    func = KaimingInit(a=100, bias=10, layer=['Conv2d', 'Linear'])
    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))


216
217
218
219
220
221
222
223
224
def test_caffe2xavierinit():
    """test Caffe2XavierInit."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = Caffe2XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))


225
226
227
228
229
230
231
232
233
234
235
236
237
class FooModule(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 2)
        self.conv2d = nn.Conv2d(3, 1, 3)
        self.conv2d_2 = nn.Conv2d(3, 2, 3)


def test_pretrainedinit():
    """test PretrainedInit class."""

    modelA = FooModule()
238
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    modelA.apply(constant_func)
    modelB = FooModule()
    funcB = PretrainedInit(checkpoint='modelA.pth')
    modelC = nn.Linear(1, 2)
    funcC = PretrainedInit(checkpoint='modelA.pth', prefix='linear.')
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        funcB(modelB)
        assert torch.equal(modelB.linear.weight,
                           torch.full(modelB.linear.weight.shape, 1.))
        assert torch.equal(modelB.linear.bias,
                           torch.full(modelB.linear.bias.shape, 2.))
        assert torch.equal(modelB.conv2d.weight,
                           torch.full(modelB.conv2d.weight.shape, 1.))
        assert torch.equal(modelB.conv2d.bias,
                           torch.full(modelB.conv2d.bias.shape, 2.))
        assert torch.equal(modelB.conv2d_2.weight,
                           torch.full(modelB.conv2d_2.weight.shape, 1.))
        assert torch.equal(modelB.conv2d_2.bias,
                           torch.full(modelB.conv2d_2.bias.shape, 2.))

        funcC(modelC)
        assert torch.equal(modelC.weight, torch.full(modelC.weight.shape, 1.))
        assert torch.equal(modelC.bias, torch.full(modelC.bias.shape, 2.))


def test_initialize():
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    foonet = FooModule()

269
    init_cfg = dict(type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
270
271
272
273
274
275
276
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    init_cfg = [
277
        dict(type='Constant', layer='Conv2d', val=1, bias=2),
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        dict(type='Constant', layer='Linear', val=3, bias=4)
    ]
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 4.))

    init_cfg = dict(
        type='Constant',
        val=1,
        bias=2,
        layer=['Conv2d', 'Linear'],
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    initialize(foonet, init_cfg)
    assert torch.equal(foonet.linear.weight,
                       torch.full(foonet.linear.weight.shape, 1.))
    assert torch.equal(foonet.linear.bias,
                       torch.full(foonet.linear.bias.shape, 2.))
    assert torch.equal(foonet.conv2d.weight,
                       torch.full(foonet.conv2d.weight.shape, 1.))
    assert torch.equal(foonet.conv2d.bias,
                       torch.full(foonet.conv2d.bias.shape, 2.))
    assert torch.equal(foonet.conv2d_2.weight,
                       torch.full(foonet.conv2d_2.weight.shape, 3.))
    assert torch.equal(foonet.conv2d_2.bias,
                       torch.full(foonet.conv2d_2.bias.shape, 4.))

    init_cfg = dict(
        type='Pretrained',
        checkpoint='modelA.pth',
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    modelA = FooModule()
311
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    modelA.apply(constant_func)
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        initialize(foonet, init_cfg)
        assert torch.equal(foonet.linear.weight,
                           torch.full(foonet.linear.weight.shape, 1.))
        assert torch.equal(foonet.linear.bias,
                           torch.full(foonet.linear.bias.shape, 2.))
        assert torch.equal(foonet.conv2d.weight,
                           torch.full(foonet.conv2d.weight.shape, 1.))
        assert torch.equal(foonet.conv2d.bias,
                           torch.full(foonet.conv2d.bias.shape, 2.))
        assert torch.equal(foonet.conv2d_2.weight,
                           torch.full(foonet.conv2d_2.weight.shape, 3.))
        assert torch.equal(foonet.conv2d_2.bias,
                           torch.full(foonet.conv2d_2.bias.shape, 4.))
    # test init_cfg type
    with pytest.raises(TypeError):
        init_cfg = 'init_cfg'
        initialize(foonet, init_cfg)

    # test override value type
    with pytest.raises(TypeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override='conv')
        initialize(foonet, init_cfg)

    # test override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=dict(type='Constant', name='conv2d_3', val=3, bias=4))
        initialize(foonet, init_cfg)

    # test list override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=[
                dict(type='Constant', name='conv2d', val=3, bias=4),
                dict(type='Constant', name='conv2d_3', val=5, bias=6)
            ])
        initialize(foonet, init_cfg)