test_onnx.py 9.6 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
import os

import numpy as np
import onnx
import onnxruntime as rt
7
import pytest
8
9
10
11
import torch
import torch.nn as nn

onnx_file = 'tmp.onnx'
pc's avatar
pc committed
12
13
if torch.__version__ == 'parrots':
    pytest.skip('not supported in parrots now', allow_module_level=True)
14
15


16
17
18
19
20
21
22
23
24
25
26
27
28
@pytest.fixture(autouse=True)
def run_before_and_after_test():
    # clear onnx_file before test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)

    yield

    # clear onnx_file after test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)


29
30
31
class WrapFunction(nn.Module):

    def __init__(self, wrapped_function):
32
        super().__init__()
33
34
35
36
37
38
        self.wrapped_function = wrapped_function

    def forward(self, *args, **kwargs):
        return self.wrapped_function(*args, **kwargs)


39
def test_roialign():
40
    try:
41
        from mmcv.ops import roi_align
42
43
44
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align op is not successfully compiled')

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align(torch_input, torch_rois, (pool_w, pool_h),
                         spatial_scale, sampling_ratio, 'avg', True)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align(input, rois, (pool_w, pool_h),
                                       spatial_scale, sampling_ratio, 'avg',
                                       True)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
83

84
        onnx_model = onnx.load(onnx_file)
85
        session_options = rt.SessionOptions()
86
87
88
89
90
91
92
93

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
Zaida Zhou's avatar
Zaida Zhou committed
94
95
        sess = rt.InferenceSession(
            onnx_file, session_options, providers=['CPUExecutionProvider'])
96
97
98
99
100
101
102
        onnx_output = sess.run(None, {
            'input': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
103

104
105
106
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


107
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def test_roipool():
    from mmcv.ops import roi_pool

    # roi pool config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
                        spatial_scale)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input).cuda()
        rois = torch.from_numpy(np_rois).cuda()

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
                                      spatial_scale)
            pytorch_output = pytorch_output.cpu()

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
Zaida Zhou's avatar
Zaida Zhou committed
157
158
        sess = rt.InferenceSession(
            onnx_file, providers=['CPUExecutionProvider'])
159
160
161
162
163
164
165
166
167
        onnx_output = sess.run(
            None, {
                'input': input.detach().cpu().numpy(),
                'rois': rois.detach().cpu().numpy()
            })
        onnx_output = onnx_output[0]

        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
168
169


170
171
172
def _test_symbolic(model, inputs, symbol_name):
    with torch.no_grad():
        torch.onnx.export(model, inputs, onnx_file, opset_version=11)
173

174
175
176
    import onnx
    model = onnx.load(onnx_file)
    nodes = model.graph.node
177

178
179
180
181
182
    symbol_exist = False
    for n in nodes:
        if n.op_type == symbol_name:
            symbol_exist = True
    assert symbol_exist
183

184

185
186
187
188
189
190
191
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_border_align():
    from mmcv.ops import BorderAlign
    model = BorderAlign(2)
    input = torch.rand(1, 8, 2, 2).cuda()
    boxes = torch.rand(1, 4, 4).cuda()
    _test_symbolic(model, (input, boxes), 'MMCVBorderAlign')
192
193


194
195
196
197
198
199
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_carafe():
    from mmcv.ops import CARAFENaive
    feat = torch.randn(2, 64, 3, 3, device='cuda').double()
    mask = torch.randn(2, 100, 6, 6, device='cuda').sigmoid().double()
    _test_symbolic(CARAFENaive(5, 4, 2), (feat, mask), 'MMCVCARAFENaive')
200
201


202
203
204
205
206
207
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_deform_conv():
    from mmcv.ops import DeformConv2dPack
    x = torch.randn(1, 2, 4, 4, device='cuda')
    _test_symbolic(
        DeformConv2dPack(2, 4, 3, 1, 1).cuda(), x, 'MMCVDeformConv2d')
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_modulated_deform_conv():
    from mmcv.ops import ModulatedDeformConv2dPack
    x = torch.randn(1, 2, 4, 4, device='cuda')
    _test_symbolic(
        ModulatedDeformConv2dPack(2, 4, 3, 1, 1).cuda(), x,
        'MMCVModulatedDeformConv2d')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_deform_roi_pool():
    from mmcv.ops import DeformRoIPoolPack
    x = torch.tensor([[[[1., 2.], [3., 4.]]]], device='cuda')
    rois = torch.tensor([[0., 0., 0., 1., 1.]], device='cuda')
    output_c = x.size(1)
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2
    model = DeformRoIPoolPack((pool_h, pool_w),
                              output_c,
                              spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio).cuda()

    _test_symbolic(model, (x, rois), 'MMCVDeformRoIPool')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_masked_conv():
    from mmcv.ops import MaskedConv2d
    x = torch.rand(1, 2, 4, 4, device='cuda')
    mask = torch.rand(1, 4, 4, device='cuda')
    _test_symbolic(
        MaskedConv2d(2, 4, 3, 1, 1).cuda(), (x, mask), 'MMCVMaskedConv2d')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_pr_roi_pool():
    from mmcv.ops import PrRoIPool
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    x = torch.tensor([[[[1., 2.], [3., 4.]]]], device='cuda')
    rois = torch.tensor([[0., 0., 0., 1., 1.]], device='cuda')
    model = PrRoIPool((pool_h, pool_w), spatial_scale).cuda()
    _test_symbolic(model, (x, rois), 'PrRoIPool')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_psa_mask():
    from mmcv.ops import PSAMask
    input = torch.rand(4, 16, 8, 8).cuda()
    model = PSAMask('collect', (4, 4)).cuda()
    _test_symbolic(model, input, 'MMCVPSAMask')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_roi_align_rotated():
    from mmcv.ops import RoIAlignRotated
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2
    x = torch.tensor([[[[1., 2.], [3., 4.]]]], device='cuda')
    rois = torch.tensor([[0., 0.5, 0.5, 1., 1., 0]], device='cuda')
    model = RoIAlignRotated((pool_h, pool_w), spatial_scale,
                            sampling_ratio).cuda()
    _test_symbolic(model, (x, rois), 'MMCVRoIAlignRotated')


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_roi_feaeture_align():
    from mmcv.ops import rotated_feature_align
    wrapped_model = WrapFunction(rotated_feature_align)
    feature = torch.rand(1, 1, 2, 2, device='cuda')
    bbox = torch.rand(1, 2, 2, 5, device='cuda')
    _test_symbolic(wrapped_model, (feature, bbox), 'MMCVRotatedFeatureAlign')