test_transforms_processing.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp

import numpy as np
import pytest

import mmcv
9
from mmcv.transforms import Normalize, Pad, RandomFlip, RandomResize, Resize
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185


class TestNormalize:

    def test_normalize(self):
        img_norm_cfg = dict(
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.12, 57.375],
            to_rgb=True)
        transform = Normalize(**img_norm_cfg)
        results = dict()
        img = mmcv.imread(
            osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
        original_img = copy.deepcopy(img)
        results['img'] = img
        results = transform(results)
        mean = np.array(img_norm_cfg['mean'])
        std = np.array(img_norm_cfg['std'])
        converted_img = (original_img[..., ::-1] - mean) / std
        assert np.allclose(results['img'], converted_img)

    def test_repr(self):
        img_norm_cfg = dict(
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.12, 57.375],
            to_rgb=True)
        transform = Normalize(**img_norm_cfg)
        assert repr(transform) == ('Normalize(mean=[123.675 116.28  103.53 ], '
                                   'std=[58.395 57.12  57.375], to_rgb=True)')


class TestResize:

    def test_resize(self):
        data_info = dict(
            img=np.random.random((1333, 800, 3)),
            gt_semantic_seg=np.random.random((1333, 800, 3)),
            gt_bboxes=np.array([[0, 0, 112, 112]]),
            gt_keypoints=np.array([[[20, 50, 1]]]))

        with pytest.raises(AssertionError):
            transform = Resize(scale=None, scale_factor=None)
        with pytest.raises(TypeError):
            transform = Resize(scale_factor=[])
        # test scale is int
        transform = Resize(scale=2000)
        results = transform(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2000, 2000)
        assert results['scale_factor'] == (2000 / 800, 2000 / 1333)

        # test scale is tuple
        transform = Resize(scale=(2000, 2000))
        results = transform(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2000, 2000)
        assert results['scale_factor'] == (2000 / 800, 2000 / 1333)

        # test scale_factor is float
        transform = Resize(scale_factor=2.0)
        results = transform(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2666, 1600)
        assert results['scale_factor'] == (2.0, 2.0)

        # test scale_factor is tuple
        transform = Resize(scale_factor=(1.5, 2))
        results = transform(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2666, 1200)
        assert results['scale_factor'] == (1.5, 2)

        # test keep_ratio is True
        transform = Resize(scale=(2000, 2000), keep_ratio=True)
        results = transform(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2000, 1200)
        assert results['scale'] == (1200, 2000)
        assert results['scale_factor'] == (1200 / 800, 2000 / 1333)

        # test resize_bboxes/seg/kps
        transform = Resize(scale_factor=(1.5, 2))
        results = transform(copy.deepcopy(data_info))
        assert (results['gt_bboxes'] == np.array([[0, 0, 168, 224]])).all()
        assert (results['gt_keypoints'] == np.array([[[30, 100, 1]]])).all()
        assert results['gt_semantic_seg'].shape[:2] == (2666, 1200)

        # test clip_object_border = False
        data_info = dict(
            img=np.random.random((300, 400, 3)),
            gt_bboxes=np.array([[200, 150, 600, 450]]))
        transform = Resize(scale=(200, 150), clip_object_border=False)
        results = transform(data_info)
        assert (results['gt_bboxes'] == np.array([100, 75, 300, 225])).all()

    def test_repr(self):
        transform = Resize(scale=(2000, 2000), keep_ratio=True)
        assert repr(transform) == ('Resize(scale=(2000, 2000), '
                                   'scale_factor=None, keep_ratio=True, '
                                   'clip_object_border=True), backend=cv2), '
                                   'interpolation=bilinear)')


class TestPad:

    def test_pad(self):
        # test size and size_divisor are both set
        with pytest.raises(AssertionError):
            Pad(size=(10, 10), size_divisor=2)

        # test size and size_divisor are both None
        with pytest.raises(AssertionError):
            Pad(size=None, size_divisor=None)

        # test size and pad_to_square are both None
        with pytest.raises(AssertionError):
            Pad(size=(10, 10), pad_to_square=True)

        # test pad_val is not int or tuple
        with pytest.raises(AssertionError):
            Pad(size=(10, 10), pad_val=[])

        # test padding_mode is not 'constant', 'edge', 'reflect' or 'symmetric'
        with pytest.raises(AssertionError):
            Pad(size=(10, 10), padding_mode='edg')

        data_info = dict(
            img=np.random.random((1333, 800, 3)),
            gt_semantic_seg=np.random.random((1333, 800, 3)),
            gt_bboxes=np.array([[0, 0, 112, 112]]),
            gt_keypoints=np.array([[[20, 50, 1]]]))

        # test pad img / gt_semantic_seg with size
        trans = Pad(size=(1200, 2000))
        results = trans(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (2000, 1200)
        assert results['gt_semantic_seg'].shape[:2] == (2000, 1200)

        # test pad img/gt_semantic_seg with size_divisor
        trans = Pad(size_divisor=11)
        results = trans(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (1342, 803)
        assert results['gt_semantic_seg'].shape[:2] == (1342, 803)

        # test pad img/gt_semantic_seg with pad_to_square
        trans = Pad(pad_to_square=True)
        results = trans(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (1333, 1333)
        assert results['gt_semantic_seg'].shape[:2] == (1333, 1333)

        # test pad img/gt_semantic_seg with pad_to_square and size_divisor
        trans = Pad(pad_to_square=True, size_divisor=11)
        results = trans(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (1342, 1342)
        assert results['gt_semantic_seg'].shape[:2] == (1342, 1342)

        # test pad img/gt_semantic_seg with pad_to_square and size_divisor
        trans = Pad(pad_to_square=True, size_divisor=11)
        results = trans(copy.deepcopy(data_info))
        assert results['img'].shape[:2] == (1342, 1342)
        assert results['gt_semantic_seg'].shape[:2] == (1342, 1342)

        # test padding_mode
        new_img = np.ones((1333, 800, 3))
        data_info['img'] = new_img
        trans = Pad(pad_to_square=True, padding_mode='edge')
        results = trans(copy.deepcopy(data_info))
        assert (results['img'] == np.ones((1333, 1333, 3))).all()

        # test pad_val
        new_img = np.zeros((1333, 800, 3))
        data_info['img'] = new_img
        trans = Pad(pad_to_square=True, pad_val=0)
        results = trans(copy.deepcopy(data_info))
        assert (results['img'] == np.zeros((1333, 1333, 3))).all()

    def test_repr(self):
        trans = Pad(pad_to_square=True, size_divisor=11, padding_mode='edge')
        assert repr(trans) == (
            'Pad(size=None, size_divisor=11, pad_to_square=True, '
            "pad_val={'img': 0, 'seg': 255}), padding_mode=edge)")
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336


class TestRandomFlip:

    def test_init(self):

        # prob is float
        TRANSFORMS = RandomFlip(0.1)
        assert TRANSFORMS.prob == 0.1

        # prob is None
        with pytest.raises(ValueError):
            TRANSFORMS = RandomFlip(None)
            assert TRANSFORMS.prob is None

        # prob is a list
        TRANSFORMS = RandomFlip([0.1, 0.2], ['horizontal', 'vertical'])
        assert len(TRANSFORMS.prob) == 2
        assert len(TRANSFORMS.direction) == 2

        # direction is an invalid type
        with pytest.raises(ValueError):
            TRANSFORMS = RandomFlip(0.1, 1)

        # prob is an invalid type
        with pytest.raises(ValueError):
            TRANSFORMS = RandomFlip('0.1')

    def test_transform(self):

        results = {
            'img': np.random.random((224, 224, 3)),
            'gt_bboxes': np.array([[0, 1, 100, 101]]),
            'gt_keypoints': np.array([[[100, 100, 1.0]]]),
            'gt_semantic_seg': np.random.random((224, 224, 3))
        }

        # horizontal flip
        TRANSFORMS = RandomFlip([1.0], ['horizontal'])
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert (results_update['gt_bboxes'] == np.array([[124, 1, 224,
                                                          101]])).all()

        # diagnal flip
        TRANSFORMS = RandomFlip([1.0], ['diagonal'])
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert (results_update['gt_bboxes'] == np.array([[124, 123, 224,
                                                          223]])).all()

        # vertical flip
        TRANSFORMS = RandomFlip([1.0], ['vertical'])
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert (results_update['gt_bboxes'] == np.array([[0, 123, 100,
                                                          223]])).all()

        # horizontal flip when direction is None
        TRANSFORMS = RandomFlip(1.0)
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert (results_update['gt_bboxes'] == np.array([[124, 1, 224,
                                                          101]])).all()

        TRANSFORMS = RandomFlip(0.0)
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert (results_update['gt_bboxes'] == np.array([[0, 1, 100,
                                                          101]])).all()

        # flip direction is invalid in bbox flip
        with pytest.raises(ValueError):
            TRANSFORMS = RandomFlip(1.0)
            results_update = TRANSFORMS.flip_bbox(results['gt_bboxes'],
                                                  (224, 224), 'invalid')

        # flip direction is invalid in keypoints flip
        with pytest.raises(ValueError):
            TRANSFORMS = RandomFlip(1.0)
            results_update = TRANSFORMS.flip_keypoints(results['gt_keypoints'],
                                                       (224, 224), 'invalid')

    def test_repr(self):
        TRANSFORMS = RandomFlip(0.1)
        TRANSFORMS_str = str(TRANSFORMS)
        assert isinstance(TRANSFORMS_str, str)


class TestRandomResize:

    def test_init(self):
        TRANSFORMS = RandomResize(
            (224, 224),
            (1.0, 2.0),
        )
        assert TRANSFORMS.scale == (224, 224)

    def test_repr(self):
        TRANSFORMS = RandomResize(
            (224, 224),
            (1.0, 2.0),
        )
        TRANSFORMS_str = str(TRANSFORMS)
        assert isinstance(TRANSFORMS_str, str)

    def test_transform(self):

        # choose target scale from init when override is True
        results = {}
        TRANSFORMS = RandomResize((224, 224), (1.0, 2.0))
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert results_update['scale'][0] >= 224 and results_update['scale'][
            0] <= 448
        assert results_update['scale'][1] >= 224 and results_update['scale'][
            1] <= 448

        # keep ratio is True
        results = {
            'img': np.random.random((224, 224, 3)),
            'gt_semantic_seg': np.random.random((224, 224, 3)),
            'gt_bboxes': np.array([[0, 0, 112, 112]]),
            'gt_keypoints': np.array([[[112, 112]]])
        }
        # import pdb
        # pdb.set_trace()
        TRANSFORMS = RandomResize((224, 224), (1.0, 2.0), keep_ratio=True)
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert 224 <= results_update['height']
        assert 448 >= results_update['height']
        assert 224 <= results_update['width']
        assert 448 >= results_update['width']
        assert results_update['keep_ratio']
        assert results['gt_bboxes'][0][2] >= 112
        assert results['gt_bboxes'][0][2] <= 112

        # keep ratio is False
        TRANSFORMS = RandomResize((224, 224), (1.0, 2.0), keep_ratio=False)
        results_update = TRANSFORMS.transform(copy.deepcopy(results))

        # choose target scale from init when override is False and scale is a
        # list of tuples
        results = {}
        TRANSFORMS = RandomResize([(224, 448), (112, 224)], keep_ratio=True)
        results_update = TRANSFORMS.transform(copy.deepcopy(results))
        assert results_update['scale'][0] >= 224 and results_update['scale'][
            0] <= 448
        assert results_update['scale'][1] >= 112 and results_update['scale'][
            1] <= 224

        # the type of scale is invalid in init
        with pytest.raises(NotImplementedError):
            results = {}
            TRANSFORMS = RandomResize([(224, 448), [112, 224]],
                                      keep_ratio=True)
            results_update = TRANSFORMS.transform(copy.deepcopy(results))