test_build_layers.py 11.3 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
import pytest
import torch
import torch.nn as nn

from mmcv.cnn.bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
6
7
8
9
10
11
                             PADDING_LAYERS, PLUGIN_LAYERS,
                             build_activation_layer, build_conv_layer,
                             build_norm_layer, build_padding_layer,
                             build_plugin_layer, build_upsample_layer, is_norm)
from mmcv.cnn.bricks.norm import infer_abbr as infer_norm_abbr
from mmcv.cnn.bricks.plugin import infer_abbr as infer_plugin_abbr
Kai Chen's avatar
Kai Chen committed
12
from mmcv.cnn.bricks.upsample import PixelShufflePack
Kai Chen's avatar
Kai Chen committed
13
from mmcv.utils.parrots_wrapper import _BatchNorm
Kai Chen's avatar
Kai Chen committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


def test_build_conv_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'Conv2d'
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict(kernel_size=3)
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported conv type
        cfg = dict(type='FancyConv')
        build_conv_layer(cfg)

    kwargs = dict(
        in_channels=4, out_channels=8, kernel_size=3, groups=2, dilation=2)
    cfg = None
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    cfg = dict(type='Conv')
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    for type_name, module in CONV_LAYERS.module_dict.items():
        cfg = dict(type=type_name)
        layer = build_conv_layer(cfg, **kwargs)
        assert isinstance(layer, module)
        assert layer.in_channels == kwargs['in_channels']
        assert layer.out_channels == kwargs['out_channels']


60
def test_infer_norm_abbr():
Kai Chen's avatar
Kai Chen committed
61
62
    with pytest.raises(TypeError):
        # class_type must be a class
63
        infer_norm_abbr(0)
Kai Chen's avatar
Kai Chen committed
64
65
66

    class MyNorm:

67
        _abbr_ = 'mn'
Kai Chen's avatar
Kai Chen committed
68

69
    assert infer_norm_abbr(MyNorm) == 'mn'
Kai Chen's avatar
Kai Chen committed
70
71
72
73

    class FancyBatchNorm:
        pass

74
    assert infer_norm_abbr(FancyBatchNorm) == 'bn'
Kai Chen's avatar
Kai Chen committed
75
76
77
78

    class FancyInstanceNorm:
        pass

79
    assert infer_norm_abbr(FancyInstanceNorm) == 'in'
Kai Chen's avatar
Kai Chen committed
80
81
82
83

    class FancyLayerNorm:
        pass

84
    assert infer_norm_abbr(FancyLayerNorm) == 'ln'
Kai Chen's avatar
Kai Chen committed
85
86
87
88

    class FancyGroupNorm:
        pass

89
    assert infer_norm_abbr(FancyGroupNorm) == 'gn'
Kai Chen's avatar
Kai Chen committed
90
91
92
93

    class FancyNorm:
        pass

94
    assert infer_norm_abbr(FancyNorm) == 'norm'
Kai Chen's avatar
Kai Chen committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229


def test_build_norm_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'BN'
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # unsupported norm type
        cfg = dict(type='FancyNorm')
        build_norm_layer(cfg, 3)

    with pytest.raises(AssertionError):
        # postfix must be int or str
        cfg = dict(type='BN')
        build_norm_layer(cfg, 3, postfix=[1, 2])

    with pytest.raises(AssertionError):
        # `num_groups` must be in cfg when using 'GN'
        cfg = dict(type='GN')
        build_norm_layer(cfg, 3)

    # test each type of norm layer in norm_cfg
    abbr_mapping = {
        'BN': 'bn',
        'BN1d': 'bn',
        'BN2d': 'bn',
        'BN3d': 'bn',
        'SyncBN': 'bn',
        'GN': 'gn',
        'LN': 'ln',
        'IN': 'in',
        'IN1d': 'in',
        'IN2d': 'in',
        'IN3d': 'in',
    }
    for type_name, module in NORM_LAYERS.module_dict.items():
        for postfix in ['_test', 1]:
            cfg = dict(type=type_name)
            if type_name == 'GN':
                cfg['num_groups'] = 2
            name, layer = build_norm_layer(cfg, 3, postfix=postfix)
            assert name == abbr_mapping[type_name] + str(postfix)
            assert isinstance(layer, module)
            if type_name == 'GN':
                assert layer.num_channels == 3
                assert layer.num_groups == cfg['num_groups']
            elif type_name != 'LN':
                assert layer.num_features == 3


def test_build_activation_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'ReLU'
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyReLU')
        build_activation_layer(cfg)

    # test each type of activation layer in activation_cfg
    for type_name, module in ACTIVATION_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_activation_layer(cfg)
        assert isinstance(layer, module)


def test_build_padding_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'reflect'
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyPad')
        build_padding_layer(cfg)

    for type_name, module in PADDING_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_padding_layer(cfg, 2)
        assert isinstance(layer, module)

    input_x = torch.randn(1, 2, 5, 5)
    cfg = dict(type='reflect')
    padding_layer = build_padding_layer(cfg, 2)
    res = padding_layer(input_x)
    assert res.shape == (1, 2, 9, 9)


def test_upsample_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'bilinear'
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyUpsample')
        build_upsample_layer(cfg)

    for type_name in ['nearest', 'bilinear']:
        cfg['type'] = type_name
        layer = build_upsample_layer(cfg)
        assert isinstance(layer, nn.Upsample)
        assert layer.mode == type_name

    cfg = dict(
        type='deconv', in_channels=3, out_channels=3, kernel_size=3, stride=2)
    layer = build_upsample_layer(cfg)
    assert isinstance(layer, nn.ConvTranspose2d)

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    cfg = dict(type='deconv')
    kwargs = dict(in_channels=3, out_channels=3, kernel_size=3, stride=2)
    layer = build_upsample_layer(cfg, **kwargs)
    assert isinstance(layer, nn.ConvTranspose2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.stride == (kwargs['stride'], kwargs['stride'])

    layer = build_upsample_layer(cfg, 3, 3, 3, 2)
    assert isinstance(layer, nn.ConvTranspose2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.stride == (kwargs['stride'], kwargs['stride'])

Kai Chen's avatar
Kai Chen committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    cfg = dict(
        type='pixel_shuffle',
        in_channels=3,
        out_channels=3,
        scale_factor=2,
        upsample_kernel=3)
    layer = build_upsample_layer(cfg)

    assert isinstance(layer, PixelShufflePack)
    assert layer.scale_factor == 2
    assert layer.upsample_kernel == 3


def test_pixel_shuffle_pack():
    x_in = torch.rand(2, 3, 10, 10)
    pixel_shuffle = PixelShufflePack(3, 3, scale_factor=2, upsample_kernel=3)
    assert pixel_shuffle.upsample_conv.kernel_size == (3, 3)
    x_out = pixel_shuffle(x_in)
    assert x_out.shape == (2, 3, 20, 20)
Kai Chen's avatar
Kai Chen committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299


def test_is_norm():
    norm_set1 = [
        nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.InstanceNorm1d,
        nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm
    ]
    norm_set2 = [nn.GroupNorm]
    for norm_type in norm_set1:
        layer = norm_type(3)
        assert is_norm(layer)
        assert not is_norm(layer, exclude=(norm_type, ))
    for norm_type in norm_set2:
        layer = norm_type(3, 6)
        assert is_norm(layer)
        assert not is_norm(layer, exclude=(norm_type, ))

    class MyNorm(nn.BatchNorm2d):
        pass

    layer = MyNorm(3)
    assert is_norm(layer)
    assert not is_norm(layer, exclude=_BatchNorm)
    assert not is_norm(layer, exclude=(_BatchNorm, ))

    layer = nn.Conv2d(3, 8, 1)
    assert not is_norm(layer)

    with pytest.raises(TypeError):
        layer = nn.BatchNorm1d(3)
        is_norm(layer, exclude='BN')

    with pytest.raises(TypeError):
        layer = nn.BatchNorm1d(3)
        is_norm(layer, exclude=('BN', ))
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373


def test_infer_plugin_abbr():
    with pytest.raises(TypeError):
        # class_type must be a class
        infer_plugin_abbr(0)

    class MyPlugin:

        _abbr_ = 'mp'

    assert infer_plugin_abbr(MyPlugin) == 'mp'

    class FancyPlugin:
        pass

    assert infer_plugin_abbr(FancyPlugin) == 'fancy_plugin'


def test_build_plugin_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'Plugin'
        build_plugin_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_plugin_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported plugin type
        cfg = dict(type='FancyPlugin')
        build_plugin_layer(cfg)

    with pytest.raises(AssertionError):
        # postfix must be int or str
        cfg = dict(type='ConvModule')
        build_plugin_layer(cfg, postfix=[1, 2])

    # test ContextBlock
    for postfix in ['', '_test', 1]:
        cfg = dict(type='ContextBlock')
        name, layer = build_plugin_layer(
            cfg, postfix=postfix, in_channels=16, ratio=1. / 4)
        assert name == 'context_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ContextBlock'])

    # test GeneralizedAttention
    for postfix in ['', '_test', 1]:
        cfg = dict(type='GeneralizedAttention')
        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
        assert name == 'gen_attention_block' + str(postfix)
        assert isinstance(layer,
                          PLUGIN_LAYERS.module_dict['GeneralizedAttention'])

    # test NonLocal2d
    for postfix in ['', '_test', 1]:
        cfg = dict(type='NonLocal2d')
        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
        assert name == 'nonlocal_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['NonLocal2d'])

    # test ConvModule
    for postfix in ['', '_test', 1]:
        cfg = dict(type='ConvModule')
        name, layer = build_plugin_layer(
            cfg,
            postfix=postfix,
            in_channels=16,
            out_channels=4,
            kernel_size=3)
        assert name == 'conv_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ConvModule'])