test_basemodule.py 22.3 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import tempfile

4
import pytest
5
6
7
import torch
from torch import nn

8
9
import mmcv
from mmcv.cnn.utils.weight_init import update_init_info
10
from mmcv.runner import BaseModule, ModuleDict, ModuleList, Sequential
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from mmcv.utils import Registry, build_from_cfg

COMPONENTS = Registry('component')
FOOMODELS = Registry('model')


@COMPONENTS.register_module()
class FooConv1d(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.conv1d = nn.Conv1d(4, 1, 4)

    def forward(self, x):
        return self.conv1d(x)


@COMPONENTS.register_module()
class FooConv2d(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.conv2d = nn.Conv2d(3, 1, 3)

    def forward(self, x):
        return self.conv2d(x)


@COMPONENTS.register_module()
class FooLinear(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.linear = nn.Linear(3, 4)

    def forward(self, x):
        return self.linear(x)


@COMPONENTS.register_module()
class FooLinearConv1d(BaseModule):

    def __init__(self, linear=None, conv1d=None, init_cfg=None):
        super().__init__(init_cfg)
        if linear is not None:
            self.linear = build_from_cfg(linear, COMPONENTS)
        if conv1d is not None:
            self.conv1d = build_from_cfg(conv1d, COMPONENTS)

    def forward(self, x):
        x = self.linear(x)
        return self.conv1d(x)


@FOOMODELS.register_module()
class FooModel(BaseModule):

    def __init__(self,
                 component1=None,
                 component2=None,
                 component3=None,
                 component4=None,
                 init_cfg=None) -> None:
        super().__init__(init_cfg)
        if component1 is not None:
            self.component1 = build_from_cfg(component1, COMPONENTS)
        if component2 is not None:
            self.component2 = build_from_cfg(component2, COMPONENTS)
        if component3 is not None:
            self.component3 = build_from_cfg(component3, COMPONENTS)
        if component4 is not None:
            self.component4 = build_from_cfg(component4, COMPONENTS)

        # its type is not BaseModule, it can be initialized
        # with "override" key.
        self.reg = nn.Linear(3, 4)


89
90
91
def test_initilization_info_logger():
    # 'override' has higher priority

92
93
    import os

94
    import torch.nn as nn
95

96
97
98
99
100
101
102
103
104
105
106
107
    from mmcv.utils.logging import get_logger

    class OverloadInitConv(nn.Conv2d, BaseModule):

        def init_weights(self):
            for p in self.parameters():
                with torch.no_grad():
                    p.fill_(1)

    class CheckLoggerModel(BaseModule):

        def __init__(self, init_cfg=None):
108
            super().__init__(init_cfg)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            self.conv1 = nn.Conv2d(1, 1, 1, 1)
            self.conv2 = OverloadInitConv(1, 1, 1, 1)
            self.conv3 = nn.Conv2d(1, 1, 1, 1)
            self.fc1 = nn.Linear(1, 1)

    init_cfg = [
        dict(
            type='Normal',
            layer='Conv2d',
            std=0.01,
            override=dict(
                type='Normal', name='conv3', std=0.01, bias_prob=0.01)),
        dict(type='Constant', layer='Linear', val=0., bias=1.)
    ]

    model = CheckLoggerModel(init_cfg=init_cfg)

    train_log = '20210720_132454.log'
    workdir = tempfile.mkdtemp()
    log_file = os.path.join(workdir, train_log)
    # create a logger
    get_logger('init_logger', log_file=log_file)
131
    assert not hasattr(model, '_params_init_info')
132
133
134
135
136
137
    model.init_weights()
    # assert `_params_init_info` would be deleted after `init_weights`
    assert not hasattr(model, '_params_init_info')
    # assert initialization information has been dumped
    assert os.path.exists(log_file)

138
139
    lines = mmcv.list_from_file(log_file)

140
    # check initialization information is right
141
    for i, line in enumerate(lines):
142
        if 'conv1.weight' in line:
143
            assert 'NormalInit' in lines[i + 1]
144
        if 'conv2.weight' in line:
145
            assert 'OverloadInitConv' in lines[i + 1]
146
        if 'fc1.weight' in line:
147
148
149
150
151
152
153
            assert 'ConstantInit' in lines[i + 1]

    # test corner case

    class OverloadInitConvFc(nn.Conv2d, BaseModule):

        def __init__(self, *args, **kwargs):
154
            super().__init__(*args, **kwargs)
155
156
157
158
159
160
161
162
163
164
            self.conv1 = nn.Linear(1, 1)

        def init_weights(self):
            for p in self.parameters():
                with torch.no_grad():
                    p.fill_(1)

    class CheckLoggerModel(BaseModule):

        def __init__(self, init_cfg=None):
165
            super().__init__(init_cfg)
166
167
168
169
170
171
172
173
            self.conv1 = nn.Conv2d(1, 1, 1, 1)
            self.conv2 = OverloadInitConvFc(1, 1, 1, 1)
            self.conv3 = nn.Conv2d(1, 1, 1, 1)
            self.fc1 = nn.Linear(1, 1)

    class TopLevelModule(BaseModule):

        def __init__(self, init_cfg=None, checklog_init_cfg=None):
174
            super().__init__(init_cfg)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            self.module1 = CheckLoggerModel(checklog_init_cfg)
            self.module2 = OverloadInitConvFc(1, 1, 1, 1)

    checklog_init_cfg = [
        dict(
            type='Normal',
            layer='Conv2d',
            std=0.01,
            override=dict(
                type='Normal', name='conv3', std=0.01, bias_prob=0.01)),
        dict(type='Constant', layer='Linear', val=0., bias=1.)
    ]

    top_level_init_cfg = [
        dict(
            type='Normal',
            layer='Conv2d',
            std=0.01,
            override=dict(
                type='Normal', name='module2', std=0.01, bias_prob=0.01))
    ]

    model = TopLevelModule(
        init_cfg=top_level_init_cfg, checklog_init_cfg=checklog_init_cfg)

    model.module1.init_weights()
    model.module2.init_weights()
    model.init_weights()
    model.module1.init_weights()
    model.module2.init_weights()

    assert not hasattr(model, '_params_init_info')
    model.init_weights()
    # assert `_params_init_info` would be deleted after `init_weights`
    assert not hasattr(model, '_params_init_info')
    # assert initialization information has been dumped
    assert os.path.exists(log_file)

    lines = mmcv.list_from_file(log_file)
    # check initialization information is right
    for i, line in enumerate(lines):
        if 'TopLevelModule' in line and 'init_cfg' not in line:
            # have been set init_flag
            assert 'the same' in line
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247


def test_update_init_info():

    class DummyModel(BaseModule):

        def __init__(self, init_cfg=None):
            super().__init__(init_cfg)
            self.conv1 = nn.Conv2d(1, 1, 1, 1)
            self.conv3 = nn.Conv2d(1, 1, 1, 1)
            self.fc1 = nn.Linear(1, 1)

    model = DummyModel()
    from collections import defaultdict
    model._params_init_info = defaultdict(dict)
    for name, param in model.named_parameters():
        model._params_init_info[param]['init_info'] = 'init'
        model._params_init_info[param]['tmp_mean_value'] = param.data.mean()

    with torch.no_grad():
        for p in model.parameters():
            p.fill_(1)

    update_init_info(model, init_info='fill_1')

    for item in model._params_init_info.values():
        assert item['init_info'] == 'fill_1'
        assert item['tmp_mean_value'] == 1

248
249
250
251
252
    # test assert for new parameters
    model.conv1.bias = nn.Parameter(torch.ones_like(model.conv1.bias))
    with pytest.raises(AssertionError):
        update_init_info(model, init_info=' ')

253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def test_model_weight_init():
    """
    Config
    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
                     Conv2d: weight=5, bias=6)
    ├──component1 (FooConv1d)
    ├──component2 (FooConv2d)
    ├──component3 (FooLinear)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear)
        ├──conv1d (FooConv1d)
    ├──reg (nn.Linear)

    Parameters after initialization
    model (FooModel)
    ├──component1 (FooConv1d, weight=3, bias=4)
    ├──component2 (FooConv2d, weight=5, bias=6)
    ├──component3 (FooLinear, weight=1, bias=2)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear, weight=1, bias=2)
        ├──conv1d (FooConv1d, weight=3, bias=4)
    ├──reg (nn.Linear, weight=1, bias=2)
    """
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=1, bias=2, layer='Linear'),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d')
        ],
        component1=dict(type='FooConv1d'),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'),
        component4=dict(
            type='FooLinearConv1d',
            linear=dict(type='FooLinear'),
            conv1d=dict(type='FooConv1d')))

    model = build_from_cfg(model_cfg, FOOMODELS)
293
    model.init_weights()
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 4.0))
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.linear.linear.weight,
        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    assert torch.equal(
        model.component4.linear.linear.bias,
        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.weight,
        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.bias,
        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
                                                    1.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))


def test_nest_components_weight_init():
    """
    Config
    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
                     Conv2d: weight=5, bias=6)
    ├──component1 (FooConv1d, Conv1d: weight=7, bias=8)
    ├──component2 (FooConv2d, Conv2d: weight=9, bias=10)
    ├──component3 (FooLinear)
    ├──component4 (FooLinearConv1d, Linear: weight=11, bias=12)
        ├──linear (FooLinear, Linear: weight=11, bias=12)
        ├──conv1d (FooConv1d)
    ├──reg (nn.Linear, weight=13, bias=14)

    Parameters after initialization
    model (FooModel)
    ├──component1 (FooConv1d, weight=7, bias=8)
    ├──component2 (FooConv2d, weight=9, bias=10)
    ├──component3 (FooLinear, weight=1, bias=2)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear, weight=1, bias=2)
        ├──conv1d (FooConv1d, weight=3, bias=4)
    ├──reg (nn.Linear, weight=13, bias=14)
    """

    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(
                type='Constant',
                val=1,
                bias=2,
                layer='Linear',
                override=dict(type='Constant', name='reg', val=13, bias=14)),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d'),
        ],
        component1=dict(
361
362
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=7, bias=8)),
363
        component2=dict(
364
365
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=9, bias=10)),
366
367
368
369
370
371
372
        component3=dict(type='FooLinear'),
        component4=dict(
            type='FooLinearConv1d',
            linear=dict(type='FooLinear'),
            conv1d=dict(type='FooConv1d')))

    model = build_from_cfg(model_cfg, FOOMODELS)
373
    model.init_weights()
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 7.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 8.0))
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 9.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 10.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.linear.linear.weight,
        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    assert torch.equal(
        model.component4.linear.linear.bias,
        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.weight,
        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.bias,
        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 13.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 14.0))
402
403


404
405
406
407
408
409
410
411
412
413
414
415
416
def test_without_layer_weight_init():
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=1, bias=2, layer='Linear'),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d')
        ],
        component1=dict(
            type='FooConv1d', init_cfg=dict(type='Constant', val=7, bias=8)),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
417
    model.init_weights()
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 4.0))

    # init_cfg in component1 does not have layer key, so it does nothing
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))

    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
                                                    1.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))


def test_override_weight_init():

    # only initialize 'override'
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=10, bias=20, override=dict(name='reg'))
        ],
        component1=dict(type='FooConv1d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
450
    model.init_weights()
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 10.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 20.0))
    # do not initialize others
    assert not torch.equal(
        model.component1.conv1d.weight,
        torch.full(model.component1.conv1d.weight.shape, 10.0))
    assert not torch.equal(
        model.component1.conv1d.bias,
        torch.full(model.component1.conv1d.bias.shape, 20.0))
    assert not torch.equal(
        model.component3.linear.weight,
        torch.full(model.component3.linear.weight.shape, 10.0))
    assert not torch.equal(
        model.component3.linear.bias,
        torch.full(model.component3.linear.bias.shape, 20.0))

    # 'override' has higher priority
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(
                type='Constant',
                val=1,
                bias=2,
                override=dict(name='reg', type='Constant', val=30, bias=40))
        ],
        component1=dict(type='FooConv1d'),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
482
    model.init_weights()
483
484
485
486
487
488

    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 30.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 40.0))


489
490
491
def test_sequential_model_weight_init():
    seq_model_cfg = [
        dict(
492
493
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
494
        dict(
495
496
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
497
498
499
    ]
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
    seq_model = Sequential(*layers)
500
    seq_model.init_weights()
501
502
503
504
505
506
507
508
    assert torch.equal(seq_model[0].conv1d.weight,
                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    assert torch.equal(seq_model[0].conv1d.bias,
                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    assert torch.equal(seq_model[1].conv2d.weight,
                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    assert torch.equal(seq_model[1].conv2d.bias,
                       torch.full(seq_model[1].conv2d.bias.shape, 3.))
509
    # inner init_cfg has higher priority
510
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
511
    seq_model = Sequential(
512
513
514
        *layers,
        init_cfg=dict(
            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
515
    seq_model.init_weights()
516
517
518
519
520
521
522
523
524
525
526
527
528
    assert torch.equal(seq_model[0].conv1d.weight,
                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    assert torch.equal(seq_model[0].conv1d.bias,
                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    assert torch.equal(seq_model[1].conv2d.weight,
                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    assert torch.equal(seq_model[1].conv2d.bias,
                       torch.full(seq_model[1].conv2d.bias.shape, 3.))


def test_modulelist_weight_init():
    models_cfg = [
        dict(
529
530
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
531
        dict(
532
533
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
534
535
536
    ]
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
    modellist = ModuleList(layers)
537
    modellist.init_weights()
538
539
540
541
542
543
544
545
    assert torch.equal(modellist[0].conv1d.weight,
                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    assert torch.equal(modellist[0].conv1d.bias,
                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    assert torch.equal(modellist[1].conv2d.weight,
                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    assert torch.equal(modellist[1].conv2d.bias,
                       torch.full(modellist[1].conv2d.bias.shape, 3.))
546
    # inner init_cfg has higher priority
547
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
548
    modellist = ModuleList(
549
550
551
        layers,
        init_cfg=dict(
            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
552
    modellist.init_weights()
553
554
555
556
557
558
559
560
    assert torch.equal(modellist[0].conv1d.weight,
                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    assert torch.equal(modellist[0].conv1d.bias,
                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    assert torch.equal(modellist[1].conv2d.weight,
                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    assert torch.equal(modellist[1].conv2d.bias,
                       torch.full(modellist[1].conv2d.bias.shape, 3.))
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611


def test_moduledict_weight_init():
    models_cfg = dict(
        foo_conv_1d=dict(
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
        foo_conv_2d=dict(
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
    )
    layers = {
        name: build_from_cfg(cfg, COMPONENTS)
        for name, cfg in models_cfg.items()
    }
    modeldict = ModuleDict(layers)
    modeldict.init_weights()
    assert torch.equal(
        modeldict['foo_conv_1d'].conv1d.weight,
        torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.))
    assert torch.equal(
        modeldict['foo_conv_1d'].conv1d.bias,
        torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.))
    assert torch.equal(
        modeldict['foo_conv_2d'].conv2d.weight,
        torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.))
    assert torch.equal(
        modeldict['foo_conv_2d'].conv2d.bias,
        torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.))
    # inner init_cfg has higher priority
    layers = {
        name: build_from_cfg(cfg, COMPONENTS)
        for name, cfg in models_cfg.items()
    }
    modeldict = ModuleDict(
        layers,
        init_cfg=dict(
            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
    modeldict.init_weights()
    assert torch.equal(
        modeldict['foo_conv_1d'].conv1d.weight,
        torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.))
    assert torch.equal(
        modeldict['foo_conv_1d'].conv1d.bias,
        torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.))
    assert torch.equal(
        modeldict['foo_conv_2d'].conv2d.weight,
        torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.))
    assert torch.equal(
        modeldict['foo_conv_2d'].conv2d.bias,
        torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.))