test_parallel.py 5.28 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
3
from unittest.mock import MagicMock, patch

4
import pytest
5
import torch
Kai Chen's avatar
Kai Chen committed
6
7
8
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel

Harry's avatar
Harry committed
9
10
from mmcv.parallel import (MODULE_WRAPPERS, MMDataParallel,
                           MMDistributedDataParallel, is_module_wrapper)
11
from mmcv.parallel._functions import Scatter, get_input_device, scatter
Kai Chen's avatar
Kai Chen committed
12
13
14
15
from mmcv.parallel.distributed_deprecated import \
    MMDistributedDataParallel as DeprecatedMMDDP


Kai Chen's avatar
Kai Chen committed
16
17
18
19
def mock(*args, **kwargs):
    pass


pc's avatar
pc committed
20
21
@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
Kai Chen's avatar
Kai Chen committed
22
23
@patch('torch.distributed._broadcast_coalesced', mock)
@patch('torch.distributed.broadcast', mock)
24
@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
Harry's avatar
Harry committed
25
def test_is_module_wrapper():
Kai Chen's avatar
Kai Chen committed
26
27
28
29
30
31
32
33
34
35

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(2, 2, 1)

        def forward(self, x):
            return self.conv(x)

36
37
38
39
40
    # _verify_model_across_ranks is added in torch1.9.0,
    # _verify_params_across_processes is added in torch1.11.0,
    # so we should check whether _verify_model_across_ranks
    # and _verify_params_across_processes are the member of
    # torch.distributed before mocking
41
42
    if hasattr(torch.distributed, '_verify_model_across_ranks'):
        torch.distributed._verify_model_across_ranks = mock
43
44
    if hasattr(torch.distributed, '_verify_params_across_processes'):
        torch.distributed._verify_params_across_processes = mock
45

Kai Chen's avatar
Kai Chen committed
46
    model = Model()
Harry's avatar
Harry committed
47
    assert not is_module_wrapper(model)
Kai Chen's avatar
Kai Chen committed
48
49

    dp = DataParallel(model)
Harry's avatar
Harry committed
50
    assert is_module_wrapper(dp)
Kai Chen's avatar
Kai Chen committed
51
52

    mmdp = MMDataParallel(model)
Harry's avatar
Harry committed
53
    assert is_module_wrapper(mmdp)
Kai Chen's avatar
Kai Chen committed
54
55

    ddp = DistributedDataParallel(model, process_group=MagicMock())
Harry's avatar
Harry committed
56
    assert is_module_wrapper(ddp)
Kai Chen's avatar
Kai Chen committed
57
58

    mmddp = MMDistributedDataParallel(model, process_group=MagicMock())
Harry's avatar
Harry committed
59
    assert is_module_wrapper(mmddp)
Kai Chen's avatar
Kai Chen committed
60
61

    deprecated_mmddp = DeprecatedMMDDP(model)
Harry's avatar
Harry committed
62
63
64
65
    assert is_module_wrapper(deprecated_mmddp)

    # test module wrapper registry
    @MODULE_WRAPPERS.register_module()
66
    class ModuleWrapper:
Harry's avatar
Harry committed
67
68
69
70
71
72
73
74
75

        def __init__(self, module):
            self.module = module

        def forward(self, *args, **kwargs):
            return self.module(*args, **kwargs)

    module_wraper = ModuleWrapper(model)
    assert is_module_wrapper(module_wraper)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


def test_get_input_device():
    # if the device is CPU, return -1
    input = torch.zeros([1, 3, 3, 3])
    assert get_input_device(input) == -1
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    assert get_input_device(inputs) == -1

    # if the device is GPU, return the index of device
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3]).cuda()
        assert get_input_device(input) == 0
        inputs = [
            torch.zeros([1, 3, 3, 3]).cuda(),
            torch.zeros([1, 4, 4, 4]).cuda()
        ]
        assert get_input_device(inputs) == 0

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        get_input_device(5)


def test_scatter():
    # if the device is CPU, just return the input
    input = torch.zeros([1, 3, 3, 3])
    output = scatter(input=input, devices=[-1])
    assert torch.allclose(input, output)

    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = scatter(input=inputs, devices=[-1])
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3])
        output = scatter(input=input, devices=[0])
        assert torch.allclose(input.cuda(), output)

        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = scatter(input=inputs, devices=[0])
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output)

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        scatter(5, [-1])


pc's avatar
pc committed
127
128
@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def test_Scatter():
    # if the device is CPU, just return the input
    target_gpus = [-1]
    input = torch.zeros([1, 3, 3, 3])
    outputs = Scatter.forward(target_gpus, input)
    assert isinstance(outputs, tuple)
    assert torch.allclose(input, outputs[0])

    target_gpus = [-1]
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = Scatter.forward(target_gpus, inputs)
    assert isinstance(outputs, tuple)
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        target_gpus = [0]
        input = torch.zeros([1, 3, 3, 3])
        outputs = Scatter.forward(target_gpus, input)
        assert isinstance(outputs, tuple)
        assert torch.allclose(input.cuda(), outputs[0])

        target_gpus = [0]
        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = Scatter.forward(target_gpus, inputs)
        assert isinstance(outputs, tuple)
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output[0])