test_build_layers.py 7.03 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import pytest
import torch
import torch.nn as nn

from mmcv.cnn.bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
                             PADDING_LAYERS, build_activation_layer,
                             build_conv_layer, build_norm_layer,
                             build_padding_layer, build_upsample_layer)
from mmcv.cnn.bricks.norm import infer_abbr
from mmcv.cnn.bricks.upsample import PixelShufflePack


def test_build_conv_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'Conv2d'
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict(kernel_size=3)
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported conv type
        cfg = dict(type='FancyConv')
        build_conv_layer(cfg)

    kwargs = dict(
        in_channels=4, out_channels=8, kernel_size=3, groups=2, dilation=2)
    cfg = None
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    cfg = dict(type='Conv')
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    for type_name, module in CONV_LAYERS.module_dict.items():
        cfg = dict(type=type_name)
        layer = build_conv_layer(cfg, **kwargs)
        assert isinstance(layer, module)
        assert layer.in_channels == kwargs['in_channels']
        assert layer.out_channels == kwargs['out_channels']


def test_infer_abbr():
    with pytest.raises(TypeError):
        # class_type must be a class
        infer_abbr(0)

    class MyNorm:

        abbr = 'mn'

    assert infer_abbr(MyNorm) == 'mn'

    class FancyBatchNorm:
        pass

    assert infer_abbr(FancyBatchNorm) == 'bn'

    class FancyInstanceNorm:
        pass

    assert infer_abbr(FancyInstanceNorm) == 'in'

    class FancyLayerNorm:
        pass

    assert infer_abbr(FancyLayerNorm) == 'ln'

    class FancyGroupNorm:
        pass

    assert infer_abbr(FancyGroupNorm) == 'gn'

    class FancyNorm:
        pass

    assert infer_abbr(FancyNorm) == 'norm'


def test_build_norm_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'BN'
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # unsupported norm type
        cfg = dict(type='FancyNorm')
        build_norm_layer(cfg, 3)

    with pytest.raises(AssertionError):
        # postfix must be int or str
        cfg = dict(type='BN')
        build_norm_layer(cfg, 3, postfix=[1, 2])

    with pytest.raises(AssertionError):
        # `num_groups` must be in cfg when using 'GN'
        cfg = dict(type='GN')
        build_norm_layer(cfg, 3)

    # test each type of norm layer in norm_cfg
    abbr_mapping = {
        'BN': 'bn',
        'BN1d': 'bn',
        'BN2d': 'bn',
        'BN3d': 'bn',
        'SyncBN': 'bn',
        'GN': 'gn',
        'LN': 'ln',
        'IN': 'in',
        'IN1d': 'in',
        'IN2d': 'in',
        'IN3d': 'in',
    }
    for type_name, module in NORM_LAYERS.module_dict.items():
        for postfix in ['_test', 1]:
            cfg = dict(type=type_name)
            if type_name == 'GN':
                cfg['num_groups'] = 2
            name, layer = build_norm_layer(cfg, 3, postfix=postfix)
            assert name == abbr_mapping[type_name] + str(postfix)
            assert isinstance(layer, module)
            if type_name == 'GN':
                assert layer.num_channels == 3
                assert layer.num_groups == cfg['num_groups']
            elif type_name != 'LN':
                assert layer.num_features == 3


def test_build_activation_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'ReLU'
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyReLU')
        build_activation_layer(cfg)

    # test each type of activation layer in activation_cfg
    for type_name, module in ACTIVATION_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_activation_layer(cfg)
        assert isinstance(layer, module)


def test_build_padding_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'reflect'
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyPad')
        build_padding_layer(cfg)

    for type_name, module in PADDING_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_padding_layer(cfg, 2)
        assert isinstance(layer, module)

    input_x = torch.randn(1, 2, 5, 5)
    cfg = dict(type='reflect')
    padding_layer = build_padding_layer(cfg, 2)
    res = padding_layer(input_x)
    assert res.shape == (1, 2, 9, 9)


def test_upsample_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'bilinear'
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyUpsample')
        build_upsample_layer(cfg)

    for type_name in ['nearest', 'bilinear']:
        cfg['type'] = type_name
        layer = build_upsample_layer(cfg)
        assert isinstance(layer, nn.Upsample)
        assert layer.mode == type_name

    cfg = dict(
        type='deconv', in_channels=3, out_channels=3, kernel_size=3, stride=2)
    layer = build_upsample_layer(cfg)
    assert isinstance(layer, nn.ConvTranspose2d)

    cfg = dict(
        type='pixel_shuffle',
        in_channels=3,
        out_channels=3,
        scale_factor=2,
        upsample_kernel=3)
    layer = build_upsample_layer(cfg)

    assert isinstance(layer, PixelShufflePack)
    assert layer.scale_factor == 2
    assert layer.upsample_kernel == 3


def test_pixel_shuffle_pack():
    x_in = torch.rand(2, 3, 10, 10)
    pixel_shuffle = PixelShufflePack(3, 3, scale_factor=2, upsample_kernel=3)
    assert pixel_shuffle.upsample_conv.kernel_size == (3, 3)
    x_out = pixel_shuffle(x_in)
    assert x_out.shape == (2, 3, 20, 20)