test_tin_shift.py 9.9 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Jintao Lin's avatar
Jintao Lin committed
2
3
4
5
6
7
import os

import numpy as np
import pytest
import torch

8
9
10
from mmcv.device.mlu import IS_MLU_AVAILABLE
from mmcv.utils import IS_CUDA_AVAILABLE

Jintao Lin's avatar
Jintao Lin committed
11
12
13
14
15
16
17
18
19
20
_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck

    _USING_PARROTS = False

cur_dir = os.path.dirname(os.path.abspath(__file__))

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
inputs = ([[[[0.88572276, 0.46422583], [0.97408265, 0.59547687],
             [0.030812204, 0.96236038], [0.75418317, 0.44058233],
             [0.33279222, 0.00084149837], [0.7069388, 0.23255438],
             [0.13547045, 0.81549376], [0.40174931, 0.36317211]],
            [[0.57444429, 0.15905505], [0.39897251, 0.25790238],
             [0.93282568, 0.18451685], [0.92526674, 0.18283755],
             [0.31664443, 0.59323865], [0.1957739, 0.42505842],
             [0.081158757, 0.81340349], [0.43456328, 0.30195212]],
            [[0.8198145, 0.05990988], [0.98062474, 0.34803438],
             [0.10412294, 0.37183142], [0.15021622, 0.038857818],
             [0.40985721, 0.42253625], [0.71150124, 0.59778064],
             [0.83851069, 0.15194464], [0.097513378, 0.74820143]],
            [[0.80680406, 0.49327564], [0.17821097, 0.12980539],
             [0.50657678, 0.14446253], [0.04178369, 0.53071898],
             [0.84983683, 0.3826949], [0.32193625, 0.91275406],
             [0.75628334, 0.52934098], [0.27994192, 0.3053292]]],
           [[[0.082397044, 0.4210068], [0.23563534, 0.7938987],
             [0.63669145, 0.69397897], [0.8844561, 0.97854084],
             [0.79027033, 0.60640401], [0.63528901, 0.72172403],
             [0.0097346902, 0.70800996], [0.87891227, 0.13674974]],
            [[0.74329448, 0.0243572], [0.82178867, 0.85750699],
             [0.7568835, 0.73146772], [0.5031184, 0.30479157],
             [0.28713053, 0.47414285], [0.4682079, 0.067471564],
             [0.48368263, 0.14590704], [0.25397325, 0.19946373]],
            [[0.4291026, 0.068739474], [0.7159555, 0.79903615],
             [0.76412082, 0.85348046], [0.081224024, 0.82264912],
             [0.97173303, 0.24291694], [0.48957139, 0.43488795],
             [0.67382395, 0.21889746], [0.36712623, 0.67127824]],
            [[0.12054044, 0.18096751], [0.86675781, 0.54755616],
             [0.68208277, 0.15164375], [0.79991871, 0.80811197],
             [0.85256428, 0.68253738], [0.185983, 0.95642138],
             [0.48102546, 0.28009653], [0.35726011, 0.58168036]]]])
Jintao Lin's avatar
Jintao Lin committed
53
54
55

shifts = [([[1, 0, 1, -2], [-2, 1, -1, 1]]), ([[2, 1, 2, -1], [-1, 2, 0, 2]])]

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
outputs = [([[[[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]],
              [[0.81981, 0.05991], [0.98062, 0.34803], [0.50658, 0.14446],
               [0.041784, 0.53072], [0.40986, 0.42254], [0.7115, 0.59778],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]],
              [[0.0, 0.0], [0.0, 0.0], [0.76412, 0.85348], [0.081224, 0.82265],
               [0.0, 0.0], [0.0, 0.0], [0.67382, 0.2189], [0.36713,
                                                           0.67128]]]]),
           ([[[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
               [0.0, 0.0], [0.081159, 0.8134], [0.43456, 0.30195]],
              [[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.74329, 0.024357], [0.82179, 0.85751], [0.0, 0.0], [0.0, 0.0],
               [0.79027, 0.6064], [0.63529, 0.72172], [0.0, 0.0], [0.0, 0.0]],
              [[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]]]])]

grads = [
    [[[[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]]]],
    [[[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]]]]
]
Jintao Lin's avatar
Jintao Lin committed
135
136


137
def _test_tinshift_gradcheck(device, dtype):
Jintao Lin's avatar
Jintao Lin committed
138
139
140
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
141
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
142
143
144
145
146
147
148
149
150

    if dtype == torch.half:
        pytest.skip('"add_cpu/sub_cpu" not implemented for Half')

    for shift in shifts:
        np_input = np.array(inputs)
        np_shift = np.array(shift)

        x = torch.tensor(
151
152
            np_input, dtype=dtype, device=device, requires_grad=True)
        shift = torch.tensor(np_shift, device=device).int()
Jintao Lin's avatar
Jintao Lin committed
153
154
155
156
157
158
        if torch.__version__ == 'parrots':
            gradcheck(tin_shift, (x, shift))
        else:
            gradcheck(tin_shift, (x, shift), atol=1, rtol=0.1)


159
def _test_tinshift_allclose(device, dtype):
Jintao Lin's avatar
Jintao Lin committed
160
161
162
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
163
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
164
165
166
167
168
169
170
171

    for shift, output, grad in zip(shifts, outputs, grads):
        np_input = np.array(inputs)
        np_shift = np.array(shift)
        np_output = np.array(output)
        np_grad = np.array(grad)

        x = torch.tensor(
172
173
            np_input, dtype=dtype, device=device, requires_grad=True)
        shift = torch.tensor(np_shift, device=device).int()
Jintao Lin's avatar
Jintao Lin committed
174
175
176
177
178
179
180
181
182

        output = tin_shift(x, shift)
        output.backward(torch.ones_like(output))
        assert np.allclose(
            output.data.type(torch.float).cpu().numpy(), np_output, 1e-3)
        assert np.allclose(
            x.grad.data.type(torch.float).cpu().numpy(), np_grad, 1e-3)


183
def _test_tinshift_assert(device, dtype):
184
185
186
187
188
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
        pytest.skip('TINShift op is not successfully compiled')

189
190
191
192
193
    inputs = [
        torch.rand(2, 3, 4, 2),
        torch.rand(2, 3, 4, 2),
        torch.rand(1, 3, 4, 2)
    ]
194
195
196
    shifts = [torch.rand(2, 3), torch.rand(2, 5)]

    for x, shift in zip(inputs, shifts):
197
198
        x = x.to(device).type(dtype)
        shift = shift.to(device).type(dtype)
199
200
201
202
203
204

        # A ValueError should be raised if ops get inputs with wrong shapes.
        with pytest.raises(ValueError):
            tin_shift(x, shift)


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    pytest.param(
        'mlu',
        marks=pytest.mark.skipif(
            not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
@pytest.mark.parametrize('dtype', [
    torch.float,
    pytest.param(
        torch.double,
        marks=pytest.mark.skipif(
            IS_MLU_AVAILABLE,
            reason='MLU does not support for 64-bit floating point')),
    torch.half
])
def test_tinshift(device, dtype):
    _test_tinshift_allclose(device=device, dtype=dtype)
    _test_tinshift_gradcheck(device=device, dtype=dtype)
    _test_tinshift_assert(device=device, dtype=dtype)