base.py 5.36 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# Copyright (c) Open-MMLab. All rights reserved.
2
import numbers
Kai Chen's avatar
Kai Chen committed
3
4
from abc import ABCMeta, abstractmethod

5
6
7
import numpy as np
import torch

Kai Chen's avatar
Kai Chen committed
8
9
10
11
from ..hook import Hook


class LoggerHook(Hook):
Kai Chen's avatar
Kai Chen committed
12
13
14
15
16
17
18
    """Base class for logger hooks.

    Args:
        interval (int): Logging interval (every k iterations).
        ignore_last (bool): Ignore the log of last iterations in each epoch
            if less than `interval`.
        reset_flag (bool): Whether to clear the output buffer after logging.
19
        by_epoch (bool): Whether EpochBasedRunner is used.
Kai Chen's avatar
Kai Chen committed
20
    """
Kai Chen's avatar
Kai Chen committed
21
22
23

    __metaclass__ = ABCMeta

24
25
26
27
28
    def __init__(self,
                 interval=10,
                 ignore_last=True,
                 reset_flag=False,
                 by_epoch=True):
Kai Chen's avatar
Kai Chen committed
29
30
31
        self.interval = interval
        self.ignore_last = ignore_last
        self.reset_flag = reset_flag
32
        self.by_epoch = by_epoch
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37

    @abstractmethod
    def log(self, runner):
        pass

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    @staticmethod
    def is_scalar(val, include_np=True, include_torch=True):
        """Tell the input variable is a scalar or not.

        Args:
            val: Input variable.
            include_np (bool): Whether include 0-d np.ndarray as a scalar.
            include_torch (bool): Whether include 0-d torch.Tensor as a scalar.

        Returns:
            bool: True or False.
        """
        if isinstance(val, numbers.Number):
            return True
        elif include_np and isinstance(val, np.ndarray) and val.ndim == 0:
            return True
        elif include_torch and isinstance(val, torch.Tensor) and len(val) == 1:
            return True
        else:
            return False

    def get_mode(self, runner):
        if runner.mode == 'train':
            if 'time' in runner.log_buffer.output:
                mode = 'train'
            else:
                mode = 'val'
        elif runner.mode == 'val':
            mode = 'val'
        else:
            raise ValueError(f"runner mode should be 'train' or 'val', "
                             f'but got {runner.mode}')
        return mode

    def get_epoch(self, runner):
        if runner.mode == 'train':
            epoch = runner.epoch + 1
        elif runner.mode == 'val':
            # normal val mode
            # runner.epoch += 1 has been done before val workflow
            epoch = runner.epoch
        else:
            raise ValueError(f"runner mode should be 'train' or 'val', "
                             f'but got {runner.mode}')
        return epoch

    def get_iter(self, runner):
        if self.by_epoch:
            current_iter = runner.inner_iter + 1
        else:
            current_iter = runner.iter + 1
        return current_iter

    def get_step(self, runner):
        if self.get_mode(runner) == 'val' and self.by_epoch:
            return self.get_epoch(runner)
        else:
            return self.get_iter(runner)

    def get_lr_tags(self, runner):
        tags = {}
        lrs = runner.current_lr()
        if isinstance(lrs, dict):
            for name, value in lrs.items():
                tags[f'learning_rate/{name}'] = value[0]
        else:
            tags['learning_rate'] = lrs[0]
        return tags

    def get_momentum_tags(self, runner):
        tags = {}
        momentums = runner.current_momentum()
        if isinstance(momentums, dict):
            for name, value in momentums.items():
                tags[f'momentum/{name}'] = value[0]
        else:
            tags['momentum'] = momentums[0]
        return tags

    def get_loggable_tags(self,
                          runner,
                          allow_scalar=True,
                          allow_text=False,
                          tags_to_skip=('time', 'data_time')):
        tags = {}
        for var, val in runner.log_buffer.output.items():
            if var in tags_to_skip:
                continue
            if self.is_scalar(val) and not allow_scalar:
                continue
            if isinstance(val, str) and not allow_text:
                continue
            tag = f'{var}/{self.get_mode(runner)}'
            tags[tag] = val
        tags.update(self.get_lr_tags(runner))
        tags.update(self.get_momentum_tags(runner))
        return tags

Kai Chen's avatar
Kai Chen committed
136
137
138
139
140
141
142
143
144
145
    def before_run(self, runner):
        for hook in runner.hooks[::-1]:
            if isinstance(hook, LoggerHook):
                hook.reset_flag = True
                break

    def before_epoch(self, runner):
        runner.log_buffer.clear()  # clear logs of last epoch

    def after_train_iter(self, runner):
146
147
148
        if self.by_epoch and self.every_n_inner_iters(runner, self.interval):
            runner.log_buffer.average(self.interval)
        elif not self.by_epoch and self.every_n_iters(runner, self.interval):
Kai Chen's avatar
Kai Chen committed
149
150
151
152
153
154
155
156
157
158
159
160
161
            runner.log_buffer.average(self.interval)
        elif self.end_of_epoch(runner) and not self.ignore_last:
            # not precise but more stable
            runner.log_buffer.average(self.interval)

        if runner.log_buffer.ready:
            self.log(runner)
            if self.reset_flag:
                runner.log_buffer.clear_output()

    def after_train_epoch(self, runner):
        if runner.log_buffer.ready:
            self.log(runner)
Cao Yuhang's avatar
Cao Yuhang committed
162
163
            if self.reset_flag:
                runner.log_buffer.clear_output()
Kai Chen's avatar
Kai Chen committed
164
165
166
167
168
169

    def after_val_epoch(self, runner):
        runner.log_buffer.average()
        self.log(runner)
        if self.reset_flag:
            runner.log_buffer.clear_output()