test_tensorrt.py 4.86 KB
Newer Older
1
2
3
4
5
6
7
import os

import numpy as np
import onnx
import pytest
import torch

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
try:
    from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
                               save_trt_engine)
except ImportError:
    pytest.skip(
        'TensorRT should be installed from source.', allow_module_level=True)

if not torch.cuda.is_available():
    pytest.skip(
        'CUDA is required for this test module', allow_module_level=True)

if not is_tensorrt_plugin_loaded():
    pytest.skip(
        'Test requires to complie TensorRT plugins in mmcv',
        allow_module_level=True)


class WrapFunction(torch.nn.Module):

    def __init__(self, wrapped_function):
        super(WrapFunction, self).__init__()
        self.wrapped_function = wrapped_function

    def forward(self, *args, **kwargs):
        return self.wrapped_function(*args, **kwargs)


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
onnx_file = 'tmp.onnx'
trt_file = 'tmp.engine'


def test_roialign():
    try:
        from mmcv.ops import RoIAlign
    except (ImportError, ModuleNotFoundError):
        pytest.skip('test requires compilation')

    # trt config
    fp16_mode = False
    max_workspace_size = 1 << 30

    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
                             'avg', True).cuda()
    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input).cuda()
        rois = torch.from_numpy(np_rois).cuda()

        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                output_names=['roi_feat'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # create trt engine and wraper
        opt_shape_dict = {
            'input': [list(input.shape),
                      list(input.shape),
                      list(input.shape)],
            'rois': [list(rois.shape),
                     list(rois.shape),
                     list(rois.shape)]
        }
        trt_engine = onnx2trt(
            onnx_model,
            opt_shape_dict,
            fp16_mode=fp16_mode,
            max_workspace_size=max_workspace_size)
        save_trt_engine(trt_engine, trt_file)
        trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat'])

        with torch.no_grad():
            trt_outputs = trt_model({'input': input, 'rois': rois})
            trt_roi_feat = trt_outputs['roi_feat']

        # compute pytorch_output
        with torch.no_grad():
            pytorch_roi_feat = wrapped_model(input, rois)

        # allclose
        if os.path.exists(onnx_file):
            os.remove(onnx_file)
        if os.path.exists(trt_file):
            os.remove(trt_file)
        assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170


def test_scatternd():

    def func(data):
        data[:, :-2] += 1
        data[:2, :] -= 1
        return data

    data = torch.zeros(4, 4).cuda()
    wrapped_model = WrapFunction(func).eval().cuda()

    input_names = ['input']
    output_names = ['output']

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (data.clone(), ),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=input_names,
            output_names=output_names,
            opset_version=11)

    onnx_model = onnx.load(onnx_file)

    # create trt engine and wraper
    opt_shape_dict = {
        'input': [list(data.shape),
                  list(data.shape),
                  list(data.shape)],
    }
    # trt config
    fp16_mode = False
    max_workspace_size = 1 << 30

    trt_engine = onnx2trt(
        onnx_model,
        opt_shape_dict,
        fp16_mode=fp16_mode,
        max_workspace_size=max_workspace_size)

    save_trt_engine(trt_engine, trt_file)
    trt_model = TRTWraper(trt_file, input_names, output_names)

    with torch.no_grad():
        trt_outputs = trt_model({'input': data.clone()})
        trt_results = trt_outputs['output']

    # compute pytorch_output
    with torch.no_grad():
        pytorch_results = wrapped_model(data.clone())

    # allclose
    if os.path.exists(onnx_file):
        os.remove(onnx_file)
    if os.path.exists(trt_file):
        os.remove(trt_file)
    assert torch.allclose(pytorch_results, trt_results)