test_voxelization.py 6.36 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
import numpy as np
import pytest
import torch

from mmcv.ops import Voxelization
7
from mmcv.utils import IS_NPU_AVAILABLE
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


def _get_voxel_points_indices(points, coors, voxel):
    result_form = np.equal(coors, voxel)
    return result_form[:, 0] & result_form[:, 1] & result_form[:, 2]


@pytest.mark.parametrize('device_type', [
    'cpu',
    pytest.param(
        'cuda:0',
        marks=pytest.mark.skipif(
            not torch.cuda.is_available(), reason='requires CUDA support'))
])
def test_voxelization(device_type):
    voxel_size = [0.5, 0.5, 0.5]
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]

    voxel_dict = np.load(
        'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
    expected_coors = voxel_dict['coors']
    expected_voxels = voxel_dict['voxels']
    expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
    points = voxel_dict['points']

    points = torch.tensor(points)
    max_num_points = -1
    dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
                                        max_num_points)
    max_num_points = 1000
    hard_voxelization = Voxelization(voxel_size, point_cloud_range,
                                     max_num_points)

    device = torch.device(device_type)

    # test hard_voxelization on cpu/gpu
44
    points = points.contiguous().to(device)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
    coors = coors.cpu().detach().numpy()
    voxels = voxels.cpu().detach().numpy()
    num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
    assert np.all(coors == expected_coors)
    assert np.all(voxels == expected_voxels)
    assert np.all(num_points_per_voxel == expected_num_points_per_voxel)

    # test dynamic_voxelization on cpu/gpu
    coors = dynamic_voxelization.forward(points)
    coors = coors.cpu().detach().numpy()
    points = points.cpu().detach().numpy()
    for i in range(expected_voxels.shape[0]):
        indices = _get_voxel_points_indices(points, coors, expected_voxels[i])
        num_points_current_voxel = points[indices].shape[0]
        assert num_points_current_voxel > 0
        assert np.all(
            points[indices] == expected_coors[i][:num_points_current_voxel])
        assert num_points_current_voxel == expected_num_points_per_voxel[i]
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_voxelization_nondeterministic():
    voxel_size = [0.5, 0.5, 0.5]
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]

    voxel_dict = np.load(
        'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
    points = voxel_dict['points']

    points = torch.tensor(points)
    max_num_points = -1
    dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
                                        max_num_points)

    max_num_points = 10
    max_voxels = 50
    hard_voxelization = Voxelization(
        voxel_size,
        point_cloud_range,
        max_num_points,
        max_voxels,
        deterministic=False)

    # test hard_voxelization (non-deterministic version) on gpu
    points = torch.tensor(points).contiguous().to(device='cuda:0')
    voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
    coors = coors.cpu().detach().numpy().tolist()
    voxels = voxels.cpu().detach().numpy().tolist()
    num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy().tolist()

    coors_all = dynamic_voxelization.forward(points)
    coors_all = coors_all.cpu().detach().numpy().tolist()

100
101
    coors_set = {tuple(c) for c in coors}
    coors_all_set = {tuple(c) for c in coors_all}
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    assert len(coors_set) == len(coors)
    assert len(coors_set - coors_all_set) == 0

    points = points.cpu().detach().numpy().tolist()

    coors_points_dict = {}
    for c, ps in zip(coors_all, points):
        if tuple(c) not in coors_points_dict:
            coors_points_dict[tuple(c)] = set()
        coors_points_dict[tuple(c)].add(tuple(ps))

    for c, ps, n in zip(coors, voxels, num_points_per_voxel):
        ideal_voxel_points_set = coors_points_dict[tuple(c)]
116
        voxel_points_set = {tuple(p) for p in ps[:n]}
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        assert len(voxel_points_set) == n
        if n < max_num_points:
            assert voxel_points_set == ideal_voxel_points_set
            for p in ps[n:]:
                assert max(p) == min(p) == 0
        else:
            assert len(voxel_points_set - ideal_voxel_points_set) == 0

    # test hard_voxelization (non-deterministic version) on gpu
    # with all input point in range
    points = torch.tensor(points).contiguous().to(device='cuda:0')[:max_voxels]
    coors_all = dynamic_voxelization.forward(points)
    valid_mask = coors_all.ge(0).all(-1)
    points = points[valid_mask]
    coors_all = coors_all[valid_mask]
    coors_all = coors_all.cpu().detach().numpy().tolist()

    voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
    coors = coors.cpu().detach().numpy().tolist()

137
138
    coors_set = {tuple(c) for c in coors}
    coors_all_set = {tuple(c) for c in coors_all}
139
140

    assert len(coors_set) == len(coors) == len(coors_all_set)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175


@pytest.mark.parametrize('device_type', [
    pytest.param(
        'npu',
        marks=pytest.mark.skipif(
            not IS_NPU_AVAILABLE, reason='requires NPU support'))
])
def test_voxelization_npu(device_type):
    voxel_size = [0.5, 0.5, 0.5]
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]

    voxel_dict = np.load(
        'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
    expected_coors = voxel_dict['coors']
    expected_voxels = voxel_dict['voxels']
    expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
    points = voxel_dict['points']

    points = torch.tensor(points)
    max_num_points = 1000
    hard_voxelization = Voxelization(voxel_size, point_cloud_range,
                                     max_num_points)

    device = torch.device(device_type)

    # test hard_voxelization on npu
    points = points.contiguous().to(device)
    coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
    coors = coors.cpu().detach().numpy()
    voxels = voxels.cpu().detach().numpy()
    num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
    assert np.all(coors == expected_coors)
    assert np.all(voxels == expected_voxels)
    assert np.all(num_points_per_voxel == expected_num_points_per_voxel)