"vscode:/vscode.git/clone" did not exist on "338f896a8a013c89c90457bf6ed98d9431e0d578"
test_modulated_deform_conv.py 4.54 KB
Newer Older
1
import os
2
from distutils.version import LooseVersion
3
4
5
6

import numpy
import torch

7
8
9
10
11
12
13
14
15
from mmcv.utils import TORCH_VERSION

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
cur_dir = os.path.dirname(os.path.abspath(__file__))

input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]]
output_t = [[[[0.5, 1.5, 2.5, 1.5], [1.0, 3.0, 5.0, 3.0], [1.0, 3.0, 5.0, 3.0],
              [0.5, 1.5, 2.5, 1.5]]]]
input_grad = [[[[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]]]]
dcn_w_grad = [[[[9., 9.], [9., 9.]]]]
dcn_offset_w_grad = [[[[-7.0, -4.0], [0.0, 0.0]]], [[[-9.0, 7.5], [-6.0,
                                                                   5.0]]],
                     [[[-4.0, -7.0], [0.0, 0.0]]],
                     [[[-7.5, -9.0], [-5.0, -6.0]]],
                     [[[-7.0, -4.0], [-7.0, -4.0]]],
                     [[[-6.0, 5.0], [-9.0, 7.5]]],
                     [[[-4.0, -7.0], [-4.0, -7.0]]],
                     [[[-5.0, -6.0], [-7.5, -9.0]]], [[[10.5, 6.0], [7.0,
                                                                     4.0]]],
                     [[[6.0, 10.5], [4.0, 7.0]]], [[[7.0, 4.0], [10.5, 6.0]]],
                     [[[4.0, 7.0], [6.0, 10.5]]]]
dcn_offset_b_grad = [
    -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, 4.5, 4.5, 4.5, 4.5
]


class TestMdconv(object):

    def _test_mdconv(self, dtype=torch.float):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import ModulatedDeformConv2dPack
        input = torch.tensor(input_t).cuda().type(dtype)
        input.requires_grad = True

        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
            bias=False).cuda()
        dcn.weight.data.fill_(1.)
        dcn.type(dtype)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def _test_amp_mdconv(self, input_dtype=torch.float):
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test mdconv in both cases. With amp, the data
        type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import ModulatedDeformConv2dPack
        input = torch.tensor(input_t).cuda().type(input_dtype)
        input.requires_grad = True

        dcn = ModulatedDeformConv2dPack(
            1,
            1,
            kernel_size=(2, 2),
            stride=1,
            padding=1,
            deform_groups=1,
            bias=False).cuda()
        dcn.weight.data.fill_(1.)
        output = dcn(input)
        output.sum().backward()
        assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
        assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
                              1e-2)
        assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
                              dcn_w_grad, 1e-2)
        assert numpy.allclose(
            dcn.conv_offset.weight.grad.cpu().detach().numpy(),
            dcn_offset_w_grad, 1e-2)
        assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
                              dcn_offset_b_grad, 1e-2)

109
110
111
112
    def test_mdconv(self):
        self._test_mdconv(torch.double)
        self._test_mdconv(torch.float)
        self._test_mdconv(torch.half)
113
114
115

        # test amp when torch version >= '1.6.0', the type of
        # input data for mdconv might be torch.float or torch.half
116
117
        if (TORCH_VERSION != 'parrots'
                and LooseVersion(TORCH_VERSION) >= LooseVersion('1.6.0')):
118
119
120
            with autocast(enabled=True):
                self._test_amp_mdconv(torch.float)
                self._test_amp_mdconv(torch.half)