test_deform_conv.py 6.24 KB
Newer Older
1
2
from distutils.version import LooseVersion

3
import numpy as np
4
import pytest
5
6
import torch

7
8
9
10
11
12
13
14
15
from mmcv.utils import TORCH_VERSION

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                 [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                 [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                 [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

gt_out = [[[[1.650, 0.], [0.000, 0.]]]]
gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012],
               [0.000, 0.252, 0.129]]]]
gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]],
                         [[[-0.72, -1.44], [0.00, -0.72]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[-0.10, -0.20], [0.00, -0.10]]],
                         [[[-0.08, -0.16], [0.00, -0.08]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]]]
gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]


class TestDeformconv(object):

    def _test_deformconv(self, dtype=torch.float, threshold=1e-3):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
        x = torch.Tensor(input).cuda().type(dtype)
        x.requires_grad = True
        model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        model.cuda().type(dtype)

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold)
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy(),
            gt_offset_weight_grad, threshold)
        assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(),
                           gt_offset_bias_grad, threshold)
        assert np.allclose(model.weight.grad.detach().cpu().numpy(),
                           gt_deform_weight_grad, threshold)

71
72
73
74
75
76
77
78
79
80
81
82
83
84
        from mmcv.ops import DeformConv2d
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    def _test_amp_deformconv(self, input_dtype, threshold=1e-3):
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test deform_conv in both cases. With amp, the
        data type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
            threshold: the same as above function.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
        x = torch.Tensor(input).cuda().type(input_dtype)
        x.requires_grad = True
        model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        model.cuda()

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold)
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy(),
            gt_offset_weight_grad, threshold)
        assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(),
                           gt_offset_bias_grad, threshold)
        assert np.allclose(model.weight.grad.detach().cpu().numpy(),
                           gt_deform_weight_grad, threshold)

        from mmcv.ops import DeformConv2d
        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

139
140
141
142
    def test_deformconv(self):
        self._test_deformconv(torch.double)
        self._test_deformconv(torch.float)
        self._test_deformconv(torch.half, 1e-1)
143
144
145

        # test amp when torch version >= '1.6.0', the type of
        # input data for deformconv might be torch.float or torch.half
146
147
        if (TORCH_VERSION != 'parrots'
                and LooseVersion(TORCH_VERSION) >= LooseVersion('1.6.0')):
148
149
150
            with autocast(enabled=True):
                self._test_amp_deformconv(torch.float, 1e-1)
                self._test_amp_deformconv(torch.half, 1e-1)