train.py 2.74 KB
Newer Older
Zaida Zhou's avatar
Zaida Zhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10

from mmcv.parallel import MMDataParallel
from mmcv.runner import EpochBasedRunner
from mmcv.utils import get_logger


class Model(nn.Module):

    def __init__(self):
17
        super().__init__()
Zaida Zhou's avatar
Zaida Zhou committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def train_step(self, data, optimizer):
        images, labels = data
        predicts = self(images)  # -> self.__call__() -> self.forward()
        loss = self.loss_fn(predicts, labels)
        return {'loss': loss}


if __name__ == '__main__':
    model = Model()
    if torch.cuda.is_available():
Jiazhen Wang's avatar
Jiazhen Wang committed
45
46
47
        # only use gpu:0 to train
        # Solved issue https://github.com/open-mmlab/mmcv/issues/1470
        model = MMDataParallel(model.cuda(), device_ids=[0])
Zaida Zhou's avatar
Zaida Zhou committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    # dataset and dataloader
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    trainset = CIFAR10(
        root='data', train=True, download=True, transform=transform)
    trainloader = DataLoader(
        trainset, batch_size=128, shuffle=True, num_workers=2)

    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    logger = get_logger('mmcv')
    # runner is a scheduler to manage the training
    runner = EpochBasedRunner(
        model,
        optimizer=optimizer,
        work_dir='./work_dir',
        logger=logger,
        max_epochs=4)

    # learning rate scheduler config
    lr_config = dict(policy='step', step=[2, 3])
    # configuration of optimizer
    optimizer_config = dict(grad_clip=None)
    # configuration of saving checkpoints periodically
    checkpoint_config = dict(interval=1)
    # save log periodically and multiple hooks can be used simultaneously
    log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
    # register hooks to runner and those hooks will be invoked automatically
    runner.register_training_hooks(
        lr_config=lr_config,
        optimizer_config=optimizer_config,
        checkpoint_config=checkpoint_config,
        log_config=log_config)

    runner.run([trainloader], [('train', 1)])