test_basemodule.py 18 KB
Newer Older
1
2
import tempfile

3
4
5
import torch
from torch import nn

6
from mmcv.runner import BaseModule, ModuleList, Sequential
7
from mmcv.runner.base_module import update_init_info
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from mmcv.utils import Registry, build_from_cfg

COMPONENTS = Registry('component')
FOOMODELS = Registry('model')


@COMPONENTS.register_module()
class FooConv1d(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.conv1d = nn.Conv1d(4, 1, 4)

    def forward(self, x):
        return self.conv1d(x)


@COMPONENTS.register_module()
class FooConv2d(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.conv2d = nn.Conv2d(3, 1, 3)

    def forward(self, x):
        return self.conv2d(x)


@COMPONENTS.register_module()
class FooLinear(BaseModule):

    def __init__(self, init_cfg=None):
        super().__init__(init_cfg)
        self.linear = nn.Linear(3, 4)

    def forward(self, x):
        return self.linear(x)


@COMPONENTS.register_module()
class FooLinearConv1d(BaseModule):

    def __init__(self, linear=None, conv1d=None, init_cfg=None):
        super().__init__(init_cfg)
        if linear is not None:
            self.linear = build_from_cfg(linear, COMPONENTS)
        if conv1d is not None:
            self.conv1d = build_from_cfg(conv1d, COMPONENTS)

    def forward(self, x):
        x = self.linear(x)
        return self.conv1d(x)


@FOOMODELS.register_module()
class FooModel(BaseModule):

    def __init__(self,
                 component1=None,
                 component2=None,
                 component3=None,
                 component4=None,
                 init_cfg=None) -> None:
        super().__init__(init_cfg)
        if component1 is not None:
            self.component1 = build_from_cfg(component1, COMPONENTS)
        if component2 is not None:
            self.component2 = build_from_cfg(component2, COMPONENTS)
        if component3 is not None:
            self.component3 = build_from_cfg(component3, COMPONENTS)
        if component4 is not None:
            self.component4 = build_from_cfg(component4, COMPONENTS)

        # its type is not BaseModule, it can be initialized
        # with "override" key.
        self.reg = nn.Linear(3, 4)


86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def test_initilization_info_logger():
    # 'override' has higher priority

    import torch.nn as nn
    from mmcv.utils.logging import get_logger
    import os

    class OverloadInitConv(nn.Conv2d, BaseModule):

        def init_weights(self):
            for p in self.parameters():
                with torch.no_grad():
                    p.fill_(1)

    class CheckLoggerModel(BaseModule):

        def __init__(self, init_cfg=None):
            super(CheckLoggerModel, self).__init__(init_cfg)
            self.conv1 = nn.Conv2d(1, 1, 1, 1)
            self.conv2 = OverloadInitConv(1, 1, 1, 1)
            self.conv3 = nn.Conv2d(1, 1, 1, 1)
            self.fc1 = nn.Linear(1, 1)

    init_cfg = [
        dict(
            type='Normal',
            layer='Conv2d',
            std=0.01,
            override=dict(
                type='Normal', name='conv3', std=0.01, bias_prob=0.01)),
        dict(type='Constant', layer='Linear', val=0., bias=1.)
    ]

    model = CheckLoggerModel(init_cfg=init_cfg)

    train_log = '20210720_132454.log'
    workdir = tempfile.mkdtemp()
    log_file = os.path.join(workdir, train_log)
    # create a logger
    get_logger('init_logger', log_file=log_file)
    assert hasattr(model, '_params_init_info')
    model.init_weights()
    # assert `_params_init_info` would be deleted after `init_weights`
    assert not hasattr(model, '_params_init_info')
    # assert initialization information has been dumped
    assert os.path.exists(log_file)

    with open(log_file) as f:
        lines = f.readlines()
    for line in lines:
        print(line)
    # check initialization information is right
    for line in lines:
        if 'conv1.weight' in line:
            assert 'NormalInit' in line
        if 'conv2.weight' in line:
            assert 'OverloadInitConv' in line
        if 'fc1.weight' in line:
            assert 'ConstantInit' in line


def test_update_init_info():

    class DummyModel(BaseModule):

        def __init__(self, init_cfg=None):
            super().__init__(init_cfg)
            self.conv1 = nn.Conv2d(1, 1, 1, 1)
            self.conv3 = nn.Conv2d(1, 1, 1, 1)
            self.fc1 = nn.Linear(1, 1)

    model = DummyModel()
    from collections import defaultdict
    model._params_init_info = defaultdict(dict)
    for name, param in model.named_parameters():
        model._params_init_info[param]['param_name'] = name
        model._params_init_info[param]['init_info'] = 'init'
        model._params_init_info[param]['tmp_mean_value'] = param.data.mean()

    with torch.no_grad():
        for p in model.parameters():
            p.fill_(1)

    update_init_info(model, init_info='fill_1')

    for item in model._params_init_info.values():
        assert item['init_info'] == 'fill_1'
        assert item['tmp_mean_value'] == 1


176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def test_model_weight_init():
    """
    Config
    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
                     Conv2d: weight=5, bias=6)
    ├──component1 (FooConv1d)
    ├──component2 (FooConv2d)
    ├──component3 (FooLinear)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear)
        ├──conv1d (FooConv1d)
    ├──reg (nn.Linear)

    Parameters after initialization
    model (FooModel)
    ├──component1 (FooConv1d, weight=3, bias=4)
    ├──component2 (FooConv2d, weight=5, bias=6)
    ├──component3 (FooLinear, weight=1, bias=2)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear, weight=1, bias=2)
        ├──conv1d (FooConv1d, weight=3, bias=4)
    ├──reg (nn.Linear, weight=1, bias=2)
    """
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=1, bias=2, layer='Linear'),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d')
        ],
        component1=dict(type='FooConv1d'),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'),
        component4=dict(
            type='FooLinearConv1d',
            linear=dict(type='FooLinear'),
            conv1d=dict(type='FooConv1d')))

    model = build_from_cfg(model_cfg, FOOMODELS)
215
    model.init_weights()
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 4.0))
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.linear.linear.weight,
        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    assert torch.equal(
        model.component4.linear.linear.bias,
        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.weight,
        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.bias,
        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
                                                    1.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))


def test_nest_components_weight_init():
    """
    Config
    model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
                     Conv2d: weight=5, bias=6)
    ├──component1 (FooConv1d, Conv1d: weight=7, bias=8)
    ├──component2 (FooConv2d, Conv2d: weight=9, bias=10)
    ├──component3 (FooLinear)
    ├──component4 (FooLinearConv1d, Linear: weight=11, bias=12)
        ├──linear (FooLinear, Linear: weight=11, bias=12)
        ├──conv1d (FooConv1d)
    ├──reg (nn.Linear, weight=13, bias=14)

    Parameters after initialization
    model (FooModel)
    ├──component1 (FooConv1d, weight=7, bias=8)
    ├──component2 (FooConv2d, weight=9, bias=10)
    ├──component3 (FooLinear, weight=1, bias=2)
    ├──component4 (FooLinearConv1d)
        ├──linear (FooLinear, weight=1, bias=2)
        ├──conv1d (FooConv1d, weight=3, bias=4)
    ├──reg (nn.Linear, weight=13, bias=14)
    """

    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(
                type='Constant',
                val=1,
                bias=2,
                layer='Linear',
                override=dict(type='Constant', name='reg', val=13, bias=14)),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d'),
        ],
        component1=dict(
283
284
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=7, bias=8)),
285
        component2=dict(
286
287
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=9, bias=10)),
288
289
290
291
292
293
294
        component3=dict(type='FooLinear'),
        component4=dict(
            type='FooLinearConv1d',
            linear=dict(type='FooLinear'),
            conv1d=dict(type='FooConv1d')))

    model = build_from_cfg(model_cfg, FOOMODELS)
295
    model.init_weights()
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 7.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 8.0))
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 9.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 10.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.linear.linear.weight,
        torch.full(model.component4.linear.linear.weight.shape, 1.0))
    assert torch.equal(
        model.component4.linear.linear.bias,
        torch.full(model.component4.linear.linear.bias.shape, 2.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.weight,
        torch.full(model.component4.conv1d.conv1d.weight.shape, 3.0))
    assert torch.equal(
        model.component4.conv1d.conv1d.bias,
        torch.full(model.component4.conv1d.conv1d.bias.shape, 4.0))
    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 13.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 14.0))
324
325


326
327
328
329
330
331
332
333
334
335
336
337
338
def test_without_layer_weight_init():
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=1, bias=2, layer='Linear'),
            dict(type='Constant', val=3, bias=4, layer='Conv1d'),
            dict(type='Constant', val=5, bias=6, layer='Conv2d')
        ],
        component1=dict(
            type='FooConv1d', init_cfg=dict(type='Constant', val=7, bias=8)),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
339
    model.init_weights()
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

    assert torch.equal(model.component1.conv1d.weight,
                       torch.full(model.component1.conv1d.weight.shape, 3.0))
    assert torch.equal(model.component1.conv1d.bias,
                       torch.full(model.component1.conv1d.bias.shape, 4.0))

    # init_cfg in component1 does not have layer key, so it does nothing
    assert torch.equal(model.component2.conv2d.weight,
                       torch.full(model.component2.conv2d.weight.shape, 5.0))
    assert torch.equal(model.component2.conv2d.bias,
                       torch.full(model.component2.conv2d.bias.shape, 6.0))
    assert torch.equal(model.component3.linear.weight,
                       torch.full(model.component3.linear.weight.shape, 1.0))
    assert torch.equal(model.component3.linear.bias,
                       torch.full(model.component3.linear.bias.shape, 2.0))

    assert torch.equal(model.reg.weight, torch.full(model.reg.weight.shape,
                                                    1.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 2.0))


def test_override_weight_init():

    # only initialize 'override'
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(type='Constant', val=10, bias=20, override=dict(name='reg'))
        ],
        component1=dict(type='FooConv1d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
372
    model.init_weights()
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 10.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 20.0))
    # do not initialize others
    assert not torch.equal(
        model.component1.conv1d.weight,
        torch.full(model.component1.conv1d.weight.shape, 10.0))
    assert not torch.equal(
        model.component1.conv1d.bias,
        torch.full(model.component1.conv1d.bias.shape, 20.0))
    assert not torch.equal(
        model.component3.linear.weight,
        torch.full(model.component3.linear.weight.shape, 10.0))
    assert not torch.equal(
        model.component3.linear.bias,
        torch.full(model.component3.linear.bias.shape, 20.0))

    # 'override' has higher priority
    model_cfg = dict(
        type='FooModel',
        init_cfg=[
            dict(
                type='Constant',
                val=1,
                bias=2,
                override=dict(name='reg', type='Constant', val=30, bias=40))
        ],
        component1=dict(type='FooConv1d'),
        component2=dict(type='FooConv2d'),
        component3=dict(type='FooLinear'))
    model = build_from_cfg(model_cfg, FOOMODELS)
404
    model.init_weights()
405
406
407
408
409
410

    assert torch.equal(model.reg.weight,
                       torch.full(model.reg.weight.shape, 30.0))
    assert torch.equal(model.reg.bias, torch.full(model.reg.bias.shape, 40.0))


411
412
413
def test_sequential_model_weight_init():
    seq_model_cfg = [
        dict(
414
415
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
416
        dict(
417
418
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
419
420
421
    ]
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
    seq_model = Sequential(*layers)
422
    seq_model.init_weights()
423
424
425
426
427
428
429
430
431
    assert torch.equal(seq_model[0].conv1d.weight,
                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    assert torch.equal(seq_model[0].conv1d.bias,
                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    assert torch.equal(seq_model[1].conv2d.weight,
                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    assert torch.equal(seq_model[1].conv2d.bias,
                       torch.full(seq_model[1].conv2d.bias.shape, 3.))
    # inner init_cfg has highter priority
432
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
433
    seq_model = Sequential(
434
435
436
        *layers,
        init_cfg=dict(
            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
437
    seq_model.init_weights()
438
439
440
441
442
443
444
445
446
447
448
449
450
    assert torch.equal(seq_model[0].conv1d.weight,
                       torch.full(seq_model[0].conv1d.weight.shape, 0.))
    assert torch.equal(seq_model[0].conv1d.bias,
                       torch.full(seq_model[0].conv1d.bias.shape, 1.))
    assert torch.equal(seq_model[1].conv2d.weight,
                       torch.full(seq_model[1].conv2d.weight.shape, 2.))
    assert torch.equal(seq_model[1].conv2d.bias,
                       torch.full(seq_model[1].conv2d.bias.shape, 3.))


def test_modulelist_weight_init():
    models_cfg = [
        dict(
451
452
            type='FooConv1d',
            init_cfg=dict(type='Constant', layer='Conv1d', val=0., bias=1.)),
453
        dict(
454
455
            type='FooConv2d',
            init_cfg=dict(type='Constant', layer='Conv2d', val=2., bias=3.)),
456
457
458
    ]
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
    modellist = ModuleList(layers)
459
    modellist.init_weights()
460
461
462
463
464
465
466
467
468
    assert torch.equal(modellist[0].conv1d.weight,
                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    assert torch.equal(modellist[0].conv1d.bias,
                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    assert torch.equal(modellist[1].conv2d.weight,
                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    assert torch.equal(modellist[1].conv2d.bias,
                       torch.full(modellist[1].conv2d.bias.shape, 3.))
    # inner init_cfg has highter priority
469
    layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
470
    modellist = ModuleList(
471
472
473
        layers,
        init_cfg=dict(
            type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
474
    modellist.init_weights()
475
476
477
478
479
480
481
482
    assert torch.equal(modellist[0].conv1d.weight,
                       torch.full(modellist[0].conv1d.weight.shape, 0.))
    assert torch.equal(modellist[0].conv1d.bias,
                       torch.full(modellist[0].conv1d.bias.shape, 1.))
    assert torch.equal(modellist[1].conv2d.weight,
                       torch.full(modellist[1].conv2d.weight.shape, 2.))
    assert torch.equal(modellist[1].conv2d.bias,
                       torch.full(modellist[1].conv2d.bias.shape, 3.))