"lmdeploy/cli/serve.py" did not exist on "7283781e605bf29fb075bfaf12748e11d99e16bb"
test_onnx.py 25.8 KB
Newer Older
1
import os
2
import warnings
3
4
5
6
7
from functools import partial

import numpy as np
import onnx
import onnxruntime as rt
8
import pytest
9
10
import torch
import torch.nn as nn
11
from packaging import version
12
13
14
15

onnx_file = 'tmp.onnx'


16
17
18
19
20
21
22
23
24
25
26
27
28
@pytest.fixture(autouse=True)
def run_before_and_after_test():
    # clear onnx_file before test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)

    yield

    # clear onnx_file after test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)


29
30
31
32
33
34
35
36
37
38
class WrapFunction(nn.Module):

    def __init__(self, wrapped_function):
        super(WrapFunction, self).__init__()
        self.wrapped_function = wrapped_function

    def forward(self, *args, **kwargs):
        return self.wrapped_function(*args, **kwargs)


39
def process_grid_sample(func, input, grid, ort_custom_op_path=''):
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    wrapped_model = WrapFunction(func).eval()

    input_names = ['input', 'grid']
    output_names = ['output']

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (input, grid),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=input_names,
            output_names=output_names,
            opset_version=11)

    onnx_model = onnx.load(onnx_file)

    session_options = rt.SessionOptions()
58
59
    if ort_custom_op_path:
        session_options.register_custom_ops_library(ort_custom_op_path)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {
        'input': input.detach().numpy(),
        'grid': grid.detach().numpy()
    })
    pytorch_results = wrapped_model(input.clone(), grid.clone())
    assert np.allclose(pytorch_results, ort_result, atol=1e-3)


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(mode, padding_mode, align_corners):
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    grid = nn.functional.affine_grid(grid, (1, 1, 15, 15)).type_as(input)

    def func(input, grid):
        return nn.functional.grid_sample(
            input,
            grid,
            mode=mode,
            padding_mode=padding_mode,
            align_corners=align_corners)

    return process_grid_sample(func, input, grid, ort_custom_op_path)


@pytest.mark.parametrize('align_corners', [True, False])
def test_bilinear_grid_sample(align_corners):
    from mmcv.ops.point_sample import bilinear_grid_sample
    # only support pytorch >= 1.5.0
    if version.parse(torch.__version__) < version.parse('1.5.0'):
        pytest.skip('Only support PyTorch >= 1.5.0')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
    grid = nn.functional.affine_grid(grid, (1, 1, 15, 15)).type_as(input)

    def func(input, grid):
        return bilinear_grid_sample(input, grid, align_corners=align_corners)

    return process_grid_sample(func, input, grid)


120
def test_nms():
121
122
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
tangyanf's avatar
tangyanf committed
123
    from mmcv.ops import get_onnxruntime_op_path, nms
124
125
126
127
128
129
    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)
SemyonBevzuk's avatar
SemyonBevzuk committed
130
131
132
133

    nms = partial(
        nms, iou_threshold=0.3, offset=0, score_threshold=0, max_num=0)
    pytorch_dets, _ = nms(boxes, scores)
134
    pytorch_score = pytorch_dets[:, 4]
SemyonBevzuk's avatar
SemyonBevzuk committed
135

136
137
138
139
140
141
142
143
144
145
146
    wrapped_model = WrapFunction(nms)
    wrapped_model.cpu().eval()
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (boxes, scores),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['boxes', 'scores'],
            opset_version=11)

SemyonBevzuk's avatar
SemyonBevzuk committed
147
    onnx_model = onnx.load(onnx_file)
tangyanf's avatar
tangyanf committed
148
149
    ort_custom_op_path = get_onnxruntime_op_path()
    session_options = rt.SessionOptions()
SemyonBevzuk's avatar
SemyonBevzuk committed
150
151
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)
tangyanf's avatar
tangyanf committed
152

153
154
155
156
157
    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
tangyanf's avatar
tangyanf committed
158
    sess = rt.InferenceSession(onnx_file, session_options)
159
160
161
162
163
164
    onnx_dets, _ = sess.run(None, {
        'scores': scores.detach().numpy(),
        'boxes': boxes.detach().numpy()
    })
    onnx_score = onnx_dets[:, 4]
    assert np.allclose(pytorch_score, onnx_score, atol=1e-3)
165
166


167
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
168
def test_softnms():
169
170
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
171
172
173
174
175
176
177
178
179
180
181
182
    from mmcv.ops import get_onnxruntime_op_path, soft_nms

    # only support pytorch >= 1.7.0
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        warnings.warn('test_softnms should be ran with pytorch >= 1.7.0')
        return

    # only support onnxruntime >= 1.5.1
    assert version.parse(rt.__version__) >= version.parse(
        '1.5.1'), 'test_softnms should be ran with onnxruntime >= 1.5.1'

    ort_custom_op_path = get_onnxruntime_op_path()
183
184
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('softnms for onnxruntime is not compiled.')
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)

    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)

    configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
               [0.3, 0.5, 0.01, 'naive']]

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)

    for _iou_threshold, _sigma, _min_score, _method in configs:
        pytorch_dets, pytorch_inds = soft_nms(
            boxes,
            scores,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)
        nms = partial(
            soft_nms,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)

        wrapped_model = WrapFunction(nms)
        wrapped_model.cpu().eval()
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (boxes, scores),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['boxes', 'scores'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_dets, onnx_inds = sess.run(None, {
            'scores': scores.detach().numpy(),
            'boxes': boxes.detach().numpy()
        })
239

240
241
242
243
        assert np.allclose(pytorch_dets, onnx_dets, atol=1e-3)
        assert np.allclose(onnx_inds, onnx_inds, atol=1e-3)


244
def test_roialign():
245
246
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
247
    try:
248
        from mmcv.ops import roi_align
249
        from mmcv.ops import get_onnxruntime_op_path
250
251
252
253
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align(torch_input, torch_rois, (pool_w, pool_h),
                         spatial_scale, sampling_ratio, 'avg', True)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align(input, rois, (pool_w, pool_h),
                                       spatial_scale, sampling_ratio, 'avg',
                                       True)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
292

293
        onnx_model = onnx.load(onnx_file)
294
295
296
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)
297
298
299
300
301
302
303
304

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
305
        sess = rt.InferenceSession(onnx_file, session_options)
306
307
308
309
310
311
312
        onnx_output = sess.run(None, {
            'input': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
313

314
315
316
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def test_roialign_rotated():
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
    try:
        from mmcv.ops import roi_align_rotated
        from mmcv.ops import get_onnxruntime_op_path
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align_aligned op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
              ([[[[1., 2.], [3., 4.]],
                 [[4., 3.], [2., 1.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3.,
                                             np.pi / 2]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
                                 spatial_scale, sampling_ratio, True, False)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align_rotated(input, rois, (pool_w, pool_h),
                                               spatial_scale, sampling_ratio,
                                               True, False)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['features', 'rois'],
                opset_version=11)

        onnx_model = onnx.load(onnx_file)
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(None, {
            'features': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
392

393
394
395
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


396
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
397
def test_roipool():
398
399
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    from mmcv.ops import roi_pool

    # roi pool config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
                        spatial_scale)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input).cuda()
        rois = torch.from_numpy(np_rois).cuda()

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
                                      spatial_scale)
            pytorch_output = pytorch_output.cpu()

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file)
        onnx_output = sess.run(
            None, {
                'input': input.detach().cpu().numpy(),
                'rois': rois.detach().cpu().numpy()
            })
        onnx_output = onnx_output[0]

        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
458
459


460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
def test_interpolate():
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)

    def func(feat, scale_factor=2):
        out = nn.functional.interpolate(feat, scale_factor=scale_factor)
        return out

    net = WrapFunction(func)
    net = net.cpu().eval()
    dummy_input = torch.randn(2, 4, 8, 8).cpu()
    torch.onnx.export(
        net,
        dummy_input,
        onnx_file,
        input_names=['input'],
        opset_version=opset_version)
    sess = rt.InferenceSession(onnx_file)
    onnx_result = sess.run(None, {'input': dummy_input.detach().numpy()})
    pytorch_result = func(dummy_input).detach().numpy()
481

482
    assert np.allclose(pytorch_result, onnx_result, atol=1e-3)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526


@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
def test_corner_pool(mode, opset=11):
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    from mmcv.ops.corner_pool import CornerPool

    def corner_pool_func(input):
        corner_pool_module = CornerPool(mode)
        return corner_pool_module.corner_pool.apply(input)

    wrapped_model = WrapFunction(corner_pool_func).eval()

    input = torch.rand((2, 3, 9, 12))  # (n,c,h,w)

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {'input': input.detach().numpy()})
    pytorch_results = wrapped_model(input.clone())
527

528
    assert np.allclose(pytorch_results, ort_result, atol=1e-5)
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602


@pytest.mark.parametrize('key', ['cummax', 'cummin'])
def test_cummax_cummin(key, opset=11):
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')

    # Note generally `cummax` or `cummin` is exportable to ONNX
    # as long as the pytorch version >= 1.5.0, since `torch.cummax`
    # is only supported with torch >= 1.5.0.
    # But when `cummax` or `cummin` serves as an intermediate component
    # whose outputs is used as inputs for another modules, it's expected
    # that pytorch version must be >= 1.7.0. Otherwise error appears like:
    # `RuntimeError: tuple  appears in op that does not forward tuples,
    # unsupported 'kind: prim::PythonOp`.
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')

    # register custom op `mmcv::cummax` and `mmcv::cummin`
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input_list = [
        # arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
        torch.rand((2, 3, 4, 1, 5)),
        torch.rand((1)),
        torch.rand((2, 0, 1)),  # tensor.numel() is 0
        torch.FloatTensor(),  # empty tensor
    ]

    cummax_cummin_funcs = {'cummax': torch.cummax, 'cummin': torch.cummin}

    for input in input_list:
        ndims = input.dim()
        # valid dim range is [-ndims, ndims-1]
        # test for all `dim` value which is valid
        for dim in range(-ndims, ndims):
            cummax_func = partial(cummax_cummin_funcs[key], dim=dim)
            wrapped_model = WrapFunction(cummax_func).eval()

            with torch.no_grad():
                torch.onnx.export(
                    wrapped_model,
                    input,
                    onnx_file,
                    export_params=True,
                    keep_initializers_as_inputs=True,
                    input_names=['input'],
                    output_names=['output', 'indices'],
                    opset_version=opset)

            onnx_model = onnx.load(onnx_file)
            input_all = [node.name for node in onnx_model.graph.input]
            input_initializer = [
                node.name for node in onnx_model.graph.initializer
            ]
            net_feed_input = list(set(input_all) - set(input_initializer))
            assert (len(net_feed_input) == 1)

            session_options = rt.SessionOptions()
            session_options.register_custom_ops_library(ort_custom_op_path)
            sess = rt.InferenceSession(onnx_file, session_options)
            ort_output, ort_inds = sess.run(None,
                                            {'input': input.detach().numpy()})
            pytorch_output, pytorch_inds = wrapped_model(input.clone())
            pytorch_output = pytorch_output.detach().numpy()
            pytorch_inds = pytorch_inds.detach().numpy()
            assert np.allclose(pytorch_output, ort_output, atol=1e-5)
            assert np.all(pytorch_inds == ort_inds)
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640


@pytest.mark.parametrize('shifts_dims_pair', [([-3, 5], [2, 0]), (5, None)])
def test_roll(shifts_dims_pair):
    opset = 11
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    input = torch.arange(0, 4 * 5 * 6, dtype=torch.float32).view(4, 5, 6)

    shifts, dims = shifts_dims_pair
    func = partial(torch.roll, shifts=shifts, dims=dims)
    wrapped_model = WrapFunction(func).eval()

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    sess = rt.InferenceSession(onnx_file)
    ort_output = sess.run(None, {'input': input.detach().numpy()})[0]

    with torch.no_grad():
        pytorch_output = wrapped_model(input.clone())

    torch.testing.assert_allclose(ort_output, pytorch_output)
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732


@pytest.mark.skipif(
    torch.__version__ == 'parrots',
    reason='onnx is not supported in parrots directly')
@pytest.mark.skipif(
    not torch.cuda.is_available(),
    reason='modulated_deform_conv2d only supports in GPU')
def test_modulated_deform_conv2d():
    try:
        from mmcv.ops import ModulatedDeformConv2d
        from mmcv.ops import get_onnxruntime_op_path
    except (ImportError, ModuleNotFoundError):
        pytest.skip('modulated_deform_conv op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    # modulated deform conv config
    in_channels = 3
    out_channels = 64
    stride = 1
    padding = 0
    dilation = 1
    groups = 1
    deform_groups = 1
    kernel_size = 3

    input = torch.rand(1, in_channels, 28, 28).cuda()  # (n, c, h, w)
    conv_offset = nn.Conv2d(
        in_channels=3,
        out_channels=deform_groups * 3 * kernel_size * kernel_size,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=True).cuda()
    conv_offset.cuda()
    out = conv_offset(input)
    o1, o2, mask = torch.chunk(out, 3, dim=1)
    offset = torch.cat((o1, o2), dim=1)
    mask = torch.sigmoid(mask)

    model_with_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=True)
    model_without_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=False)
    models = [model_with_bias.cuda(), model_without_bias.cuda()]

    for model in models:
        # export and load onnx model
        with torch.no_grad():
            torch.onnx.export(
                model, (input, offset, mask),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'offset', 'mask'],
                opset_version=11)

        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)

        # compute onnx_output
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(
            None, {
                'input': input.cpu().detach().numpy(),
                'offset': offset.cpu().detach().numpy(),
                'mask': mask.cpu().detach().numpy()
            })[0]

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = model(input, offset, mask).cpu()
        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)