Commit fe207787 authored by Mohammad's avatar Mohammad
Browse files

added new gpt2 dataloder

parent 1eccd462
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPT2 Style dataset."""
import os
import time
import numpy as np
import torch
from torch.utils.data import Dataset
def print_rank_0(message):
print(message)
class GPT2Dataset(Dataset):
def __init__(self, name, data_prefix,
documents, indexed_dataset,
num_samples, seq_length, seed):
self.name = name
self.data_prefix = data_prefix
self.num_samples = num_samples
self.seq_length = seq_length
self.seed = seed
self.indexed_dataset = indexed_dataset
# Checks
assert np.min(documents) >= 0
assert np.max(documents) < indexed_dataset.sizes.shape[0]
# Build index mappings.
self.num_epochs, self.doc_idx, self.sample_idx, self.shuffle_idx \
= _build_index_mappings(self.name, self.data_prefix, documents,
self.indexed_dataset.sizes,
self.num_samples, self.seq_length,
self.seed)
def __len__(self):
return self.sample_idx.shape[0]
def __getitem__(self, idx):
# Get the shuffled index.
idx = self.shuffle_idx[idx]
# Start and end documents and offsets.
doc_index_f = self.sample_idx[idx][0]
doc_index_l = self.sample_idx[idx+1][0]
offset_f = self.sample_idx[idx][1]
offset_l = self.sample_idx[idx+1][1]
# If we are within the same document, just extract the chunk.
if doc_index_f == doc_index_l:
sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
offset=offset_f,
length=offset_l - offset_f + 1)
else:
# Otherwise, get the rest of the initial document.
sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
offset=offset_f)]
# Loop over all in between documents and add the entire document.
for i in range(doc_index_f+1, doc_index_l):
sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
# And finally add the relevant portion of last document.
sample_list.append(self.indexed_dataset.get(
self.doc_idx[doc_index_l],
length=offset_l+1))
sample = np.concatenate(sample_list)
return sample
def _build_index_mappings(name, data_prefix, documents, sizes,
num_samples, seq_length, seed):
"""doc-idx, sample-idx, and shuffle-idx."""
# Number of tokens in each epoch and number of required epochs.
tokens_per_epoch = _num_tokens(documents, sizes)
num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
# rng state
np_rng = np.random.RandomState(seed=seed)
# Filename of the index mappings.
_filename = data_prefix
_filename += '_{}_indexmap'.format(name)
_filename += '_{}ns'.format(num_samples)
_filename += '_{}sl'.format(seq_length)
_filename += '_{}s'.format(seed)
doc_idx_filename = _filename + '_doc_idx.npy'
sample_idx_filename = _filename + '_sample_idx.npy'
shuffle_idx_filename = _filename + '_shuffle_idx.npy'
# Build the indexed mapping if not exist.
if True: #torch.distributed.get_rank() == 0:
if (not os.path.isfile(doc_idx_filename)) or \
(not os.path.isfile(sample_idx_filename)) or \
(not os.path.isfile(shuffle_idx_filename)):
print_rank_0(' > WARNING: could not find index map files, building '
'the indices on rank 0 ...')
# doc-idx.
start_time = time.time()
doc_idx = _build_doc_idx(documents, num_epochs, np_rng)
np.save(doc_idx_filename, doc_idx, allow_pickle=True)
print_rank_0(' > elasped time to build and save doc-idx mapping '
'(seconds): {:4f}'.format(time.time() - start_time))
# sample-idx.
start_time = time.time()
sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
num_epochs, tokens_per_epoch)
np.save(sample_idx_filename, sample_idx, allow_pickle=True)
print_rank_0(' > elasped time to build and save sample-idx mapping '
'(seconds): {:4f}'.format(time.time() - start_time))
# shuffle-idx.
start_time = time.time()
shuffle_idx = _build_shuffle_idx(sample_idx.shape[0], np_rng)
np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
print_rank_0(' > elasped time to build and save shuffle-idx mapping'
' (seconds): {:4f}'.format(time.time() - start_time))
# This should be a barrier but nccl barrier assumes
# device_index=rank which is not the case for model
# parallel case
counts = torch.cuda.LongTensor([1])
#torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
#assert counts[0].item() == torch.distributed.get_world_size(
# group=mpu.get_data_parallel_group())
# Load mappings.
start_time = time.time()
print_rank_0(' > loading doc-idx mapping from {}'.format(
doc_idx_filename))
doc_idx = np.load(doc_idx_filename, allow_pickle=True)
print_rank_0(' > loading sample-idx mapping from {}'.format(
sample_idx_filename))
sample_idx = np.load(sample_idx_filename, allow_pickle=True)
print_rank_0(' > loading shuffle-idx mapping from {}'.format(
shuffle_idx_filename))
shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True)
print_rank_0(' loaded indexed file in {:3.3f} seconds'.format(
time.time() - start_time))
print_rank_0(' total number of samples: {}'.format(
sample_idx.shape[0]))
return num_epochs, doc_idx, sample_idx, shuffle_idx
def _num_tokens(documents, sizes):
"""Total number of tokens in the dataset."""
return np.sum(sizes[documents])
def _num_epochs(tokens_per_epoch, seq_length, num_samples):
"""Based on number of samples and sequence lenght, calculate how many
epochs will be needed."""
num_epochs = 0
total_tokens = 0
while True:
num_epochs += 1
total_tokens += tokens_per_epoch
# -1 is because we need to retrieve seq_length + 1 token each time
# but the last token will overlap with the first token of the next
# sample except for the last sample.
if ((total_tokens - 1) // seq_length) >= num_samples:
return num_epochs
def _build_doc_idx(documents, num_epochs, np_rng):
"""Build an array with length = number-of-epochs * number-of-dcuments.
Each index is mapped to a corresponding document."""
doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
doc_idx[:] = documents
doc_idx = doc_idx.reshape(-1)
np_rng.shuffle(doc_idx)
return doc_idx
def _build_sample_idx(sizes, doc_idx, seq_length,
num_epochs, tokens_per_epoch):
"""Sample index mapping is a 2D array with sizes
[number-of-samples + 1, 2] where [..., 0] contains
the index into `doc_idx` and [..., 0] is the
starting offset in that document."""
# Total number of samples. For -1 see comments in `_num_epochs`.
num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)
# Index into sample_idx.
sample_index = 0
# Index into doc_idx.
doc_idx_index = 0
# Begining offset for each document.
doc_offset = 0
# Start with first document and no offset.
sample_idx[sample_index][0] = doc_idx_index
sample_idx[sample_index][1] = doc_offset
sample_index += 1
while sample_index <= num_samples:
# Start with a fresh sequence.
remaining_seq_length = seq_length + 1
while remaining_seq_length != 0:
# Get the document length.
doc_id = doc_idx[doc_idx_index]
doc_length = sizes[doc_id] - doc_offset
# And add it to the current sequence.
remaining_seq_length -= doc_length
# If we have more than a full sequence, adjust offset and set
# remaining length to zero so we return from the while loop.
# Note that -1 here is for the same reason we have -1 in
# `_num_epochs` calculations.
if remaining_seq_length <= 0:
doc_offset += (remaining_seq_length + doc_length - 1)
remaining_seq_length = 0
else:
# Otherwise, start from the begining of the next document.
doc_idx_index += 1
doc_offset = 0
# Record the sequence.
sample_idx[sample_index][0] = doc_idx_index
sample_idx[sample_index][1] = doc_offset
sample_index += 1
return sample_idx
def _build_shuffle_idx(size, np_rng):
"""Build the range [0, size) and shuffle."""
dtype_ = np.uint32
if size >= (np.iinfo(np.uint32).max - 1):
dtype_ = np.int64
shuffle_idx = np.arange(start=0, stop=size, step=1, dtype=dtype_)
#np_rng.shuffle(shuffle_idx)
return shuffle_idx
class IndexedDataset:
def __init__(self, num_docs, min_doc_length, max_doc_length, seq_length):
self.seq_length = seq_length
assert min_doc_length > 0
self.tokens = []
self.sizes = np.zeros(num_docs, dtype=np.int32)
for i in range(num_docs):
size = np.random.randint(low=min_doc_length, high=max_doc_length,
size=1, dtype=np.uint32)[0]
tokens_ = np.random.randint(low=1, high=60000,
size=size, dtype=np.uint32)
tokens_[-1] = 0
self.sizes[i] = size
self.tokens.append(tokens_)
self.tokens_flat = None
def get(self, doc_idx, offset=None, length=None):
if length is None:
if offset is None:
return self.tokens[doc_idx]
else:
return self.tokens[doc_idx][offset:]
if offset is None:
return self.tokens[doc_idx][0:length]
return self.tokens[doc_idx][offset:(offset+length)]
def get_sample(self, index):
start = index * self.seq_length
end = start + self.seq_length + 1
return self.tokens_flat[start:end]
def build_tokens_flat(self, doc_idx):
self.tokens_flat = np.concatenate([self.tokens[i] for i in doc_idx])
def test(seed, data_prefix, seq_length, num_samples,
num_docs, min_doc_length, max_doc_length):
print('testing for seed: {}, seq-length: {}, num-samples: {}, '
'num-docs: {}, min-doc-length: {}, max-doc-length: {}'.format(
seed, seq_length, num_samples,
num_docs, min_doc_length, max_doc_length))
np.random.seed(seed)
indexed_dataset = IndexedDataset(num_docs, min_doc_length,
max_doc_length, seq_length)
indices = np.random.randint(indexed_dataset.sizes.shape[0]-2, size=2)
documents = np.arange(np.min(indices), np.max(indices)+1)
dataset = GPT2Dataset('gpt2', data_prefix, documents, indexed_dataset,
num_samples, seq_length, seed)
print(' > number of epochs:', dataset.num_epochs)
indexed_dataset.build_tokens_flat(dataset.doc_idx)
for idx in range(num_samples):
a = dataset[idx]
b = indexed_dataset.get_sample(idx)
assert np.sum(a - b) == 0
print('passed')
if __name__ == '__main__':
print('gpt2 dataset ...')
import random
data_prefix = 'junk/'
for seed in range(1234, 1240):
random.seed(seed)
num_docs = random.randint(1, 999)
min_doc_length = random.randint(1, 99)
max_doc_length = random.randint(100, 9999)
num_samples = random.randint(num_docs, 100*num_docs)
seq_length = random.randint(min_doc_length, max_doc_length)
test(seed, data_prefix, seq_length, num_samples,
num_docs, min_doc_length, max_doc_length)
exit()
'''
num_docs = 5
min_doc_length = 2
max_doc_length = 10
num_samples = 9
seq_length = 4
seed = 1234
np.random.seed(seed)
indexed_dataset = IndexedDataset(num_docs, min_doc_length,
max_doc_length, seq_length)
print('> indexed dataset:')
for s in indexed_dataset.tokens:
print(' {}'.format(s))
documents = np.array([1,2,3], dtype=np.int32)
dataset = GPT2Dataset('gpt2', documents, indexed_dataset,
num_samples, seq_length, seed)
indexed_dataset.build_tokens_flat(dataset.doc_idx)
print(indexed_dataset.get_sample(6))
print(dataset[6])
'''
'''
myds = MyDataset(ds, num_samples, seq_length)
num_docs = myds._num_docs()
print('> number of document: {}'.format(num_docs))
tokens_per_epoch = myds._num_tokens()
print('> number of tokens: {}'.format(tokens_per_epoch))
num_epochs = myds._num_epochs(tokens_per_epoch)
print('> number of epochs: {}'.format(num_epochs))
doc_idx = myds._build_doc_idx(num_docs, num_epochs)
print('> doc_idx: {}'.format(doc_idx))
ds.build_tokens_flat(doc_idx)
sample_idx =myds._build_sample_idx(num_epochs, tokens_per_epoch, doc_idx)
for s in sample_idx:
print(s)
print(ds.tokens_flat)
print(myds.get_sample(8))
print(ds.get_sample(8))
'''
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment