Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
fe1ea898
Commit
fe1ea898
authored
May 05, 2020
by
mohammad
Browse files
Merge branch 'master' into master_params_sharing
parents
b1ac9fd3
3ee811be
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
2 deletions
+15
-2
megatron/data/samplers.py
megatron/data/samplers.py
+15
-2
No files found.
megatron/data/samplers.py
View file @
fe1ea898
...
...
@@ -80,10 +80,20 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
implementation is at the batch sampler level, instead of just the
sampler level. This allows wrapping of arbitrary data samplers
(sequential, random, WeightedRandomSampler, etc.) with this batch
sampler."""
sampler.
The `interleave` argument specifies how to distribute a batch. A value
of True combined with the above random sampler is equivalent to pytorch's
torch.utils.data.distributed.DistributedSampler.
For the following batch [0,1,2,3,4,5,6,7] and data parallelism of 2
specifying True will result in the following samples for each gpu:
GPU0: [0,2,4,6] GPU1: [1,3,5,7]
specifying False will result in the following samples:
GPU0: [0,1,2,3] GPU1: [4,5,6,7]"""
def
__init__
(
self
,
sampler
,
batch_size
,
drop_last
,
rank
=-
1
,
world_size
=
2
,
wrap_last
=
False
):
world_size
=
2
,
wrap_last
=
False
,
interleave
=
False
):
super
(
DistributedBatchSampler
,
self
).
__init__
(
sampler
,
batch_size
,
drop_last
)
if
rank
==
-
1
:
...
...
@@ -95,6 +105,7 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
self
.
wrap_around
=
0
self
.
wrap_last
=
wrap_last
self
.
start_iter
=
0
self
.
interleave
=
interleave
def
__iter__
(
self
):
batch
=
[]
...
...
@@ -130,6 +141,8 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
def
_batch
(
self
,
batch
):
"""extracts samples only pertaining to this worker's batch"""
if
self
.
interleave
:
return
batch
[
self
.
rank
:
self
.
batch_size
:
self
.
world_size
]
start
=
self
.
rank
*
self
.
batch_size
//
self
.
world_size
end
=
(
self
.
rank
+
1
)
*
self
.
batch_size
//
self
.
world_size
return
batch
[
start
:
end
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment