Commit f00d0a3f authored by Mohammad Shoeybi's avatar Mohammad Shoeybi
Browse files

Merge branch 'readme-no-versions' into 'main'

Remove specific versions of pytorch, etc. from README so it doesn't go out of date.

See merge request ADLR/megatron-lm!392
parents d5fe59fe d50e89f1
...@@ -47,9 +47,7 @@ All the cases from 1 billion to 1 trillion parameters achieve more than 43% half ...@@ -47,9 +47,7 @@ All the cases from 1 billion to 1 trillion parameters achieve more than 43% half
* [Collecting GPT Webtext Data](#collecting-gpt-webtext-data) * [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
# Setup # Setup
We have tested Megatron with [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) version 20.12, which uses python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3. We strongly recommend using the latest release of [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch). If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start) releases. Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
To use this repository, please install the latest supported versions of PyTorch with GPU support (python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3 and above) and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start). We strongly recommend using one of [NGC's recent PyTorch containers](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) (the latest compatible version at time of publication can be pulled with `docker pull nvcr.io/nvidia/pytorch:20.12-py3`). Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
## Downloading Checkpoints ## Downloading Checkpoints
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1). We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment