Commit acf8780b authored by Mohammad Shoeybi's avatar Mohammad Shoeybi
Browse files

Merge branch 'doc-updates-final' into 'staging'

Doc updates final

See merge request ADLR/megatron-lm!68
parents 13d90b36 7ec42d95
......@@ -284,7 +284,7 @@ WORLD_SIZE=$MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
</pre>
Several downstream tasks are described for both GPT-2 and BERT models below.
Several downstream tasks are described for both GPT-2 and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
<a id="gpt-2-text-generation"></a>
## GPT-2 Text Generation
......@@ -323,11 +323,11 @@ We include example scripts for GPT-2 evaluation on WikiText perplexity evaluatio
### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.
We use the following command to run WikiText-103 evaluation on a 345M parameter model:
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
<pre>
TASK="WIKITEXT103"
VALID_DATA=&#60;wikitext path&#62;
VALID_DATA=&#60;wikitext path&#62;.txt
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
......@@ -335,8 +335,8 @@ CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS="--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--fp16 \
--vocab-file $VOCAB_FILE"
......@@ -359,12 +359,12 @@ python tasks/main.py \
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceeding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching.
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
<pre>
TASK="LAMBADA"
VALID_DATA=&#60;lambada path&#62;
VALID_DATA=&#60;lambada path&#62;.json
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
......@@ -391,7 +391,7 @@ Further command line arguments are described in the source file [`main.py`](./ta
## BERT Task Evaluation
<a id="race-evaluation"></a>
### RACE Evaluation
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/).
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files.
<pre>
TRAIN_DATA="data/RACE/train/middle"
......@@ -400,17 +400,23 @@ VALID_DATA="data/RACE/dev/middle \
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
COMMON_TASK_ARGS="--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--fp16 \
--vocab-file $VOCAB_FILE"
COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
--valid-data $VALID_DATA \
--pretrained-checkpoint $PRETRAINED_CHECKPOINT \
--checkpoint-activations \
--save-interval 500000 \
--save-interval 10000 \
--save $CHECKPOINT_PATH \
--log-interval 10 \
--eval-interval 100 \
--eval-iters 50 \
--log-interval 100 \
--eval-interval 1000 \
--eval-iters 10 \
--weight-decay 1.0e-1"
python tasks/main.py \
......@@ -436,8 +442,8 @@ VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
COMMON_TASK_ARGS=&#60;same as those in <a href="#lambada-cloze-accuracy">LAMBADA Cloze Accuracy</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">Race Evaluation</a> above&#62;
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
python tasks/main.py \
--task MNLI \
......
......@@ -30,8 +30,8 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \
--num-attention-heads 16 \
--batch-size 8 \
--checkpoint-activations \
--seq-length 512 \
--max-position-embeddings 512 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--log-interval 10 \
--fp16 \
--no-load-optim \
......
......@@ -12,7 +12,7 @@ TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRIANED_CHECKPOINT=checkpoints/bert_345m
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \
......@@ -23,7 +23,7 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \
--tokenizer-type BertWordPieceLowerCase \
--vocab-file $VOCAB_FILE \
--epochs 3 \
--pretrained-checkpoint $PRETRIANED_CHECKPOINT \
--pretrained-checkpoint $PRETRAINED_CHECKPOINT \
--model-parallel-size 1 \
--num-layers 24 \
--hidden-size 1024 \
......@@ -35,7 +35,7 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \
--warmup 0.06 \
--seq-length 512 \
--max-position-embeddings 512 \
--save-interval 500000 \
--save-interval 100000 \
--save $CHECKPOINT_PATH \
--log-interval 10 \
--eval-interval 100 \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment