Commit a2fdcdf0 authored by Sangkug Lym's avatar Sangkug Lym
Browse files

persistent fused layer norm

fix the guard to fall back to the baseline fused layer norm kernel

Persisten ln: move the guard for supported hidden sizes to layer norm module
parent f5345dfa
...@@ -257,6 +257,16 @@ def parse_args(extra_args_provider=None, defaults={}, ...@@ -257,6 +257,16 @@ def parse_args(extra_args_provider=None, defaults={},
'currently distrobuted checkpoint activations only supported for ' \ 'currently distrobuted checkpoint activations only supported for ' \
'nointerleaved pipeline parallelism' 'nointerleaved pipeline parallelism'
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
# Persistent fused layer norm.
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
args.no_persist_layer_norm = True
if args.rank == 0:
print('Persistent fused layer norm kernel is supported from '
'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
'Defaulting to no_persist_layer_norm=True')
_print_args(args) _print_args(args)
return args return args
...@@ -486,6 +496,11 @@ def _add_training_args(parser): ...@@ -486,6 +496,11 @@ def _add_training_args(parser):
help='Disable asynchronous execution of ' help='Disable asynchronous execution of '
'tensor-model-parallel all-reduce with weight ' 'tensor-model-parallel all-reduce with weight '
'gradient compuation of a column-linear layer.') 'gradient compuation of a column-linear layer.')
group.add_argument('--no-persist-layer-norm', action='store_true',
help='Disable using persistent fused layer norm kernel. '
'This kernel supports only a set of hidden sizes. Please '
'check persist_ln_hidden_sizes if your hidden '
'size is supported.')
return parser return parser
......
...@@ -23,6 +23,8 @@ from torch.nn.parameter import Parameter ...@@ -23,6 +23,8 @@ from torch.nn.parameter import Parameter
from torch.nn import init from torch.nn import init
import importlib import importlib
from apex.contrib.layer_norm.layer_norm import FastLayerNormFN
global fused_mix_prec_layer_norm_cuda global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = None fused_mix_prec_layer_norm_cuda = None
...@@ -61,13 +63,22 @@ class FusedLayerNormAffineFunction(torch.autograd.Function): ...@@ -61,13 +63,22 @@ class FusedLayerNormAffineFunction(torch.autograd.Function):
class MixedFusedLayerNorm(torch.nn.Module): class MixedFusedLayerNorm(torch.nn.Module):
def __init__(self, normalized_shape, eps=1e-5): def __init__(self, normalized_shape, eps=1e-5, no_persist_layer_norm=True):
super(MixedFusedLayerNorm, self).__init__() super(MixedFusedLayerNorm, self).__init__()
global fused_mix_prec_layer_norm_cuda global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = importlib.import_module( fused_mix_prec_layer_norm_cuda = importlib.import_module(
"fused_mix_prec_layer_norm_cuda") "fused_mix_prec_layer_norm_cuda")
# List of hiddens sizes supported in the persistent layer norm kernel
# If the hidden size is not supported, fall back to the non-persistent
# kernel.
persist_ln_hidden_sizes = [1024, 1536, 2048, 2304, 3072, 3840, 4096,
5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480,
24576, 25600, 30720, 32768, 40960, 49152, 65536]
if normalized_shape not in persist_ln_hidden_sizes:
no_persist_layer_norm = True
if isinstance(normalized_shape, numbers.Integral): if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,) normalized_shape = (normalized_shape,)
self.normalized_shape = torch.Size(normalized_shape) self.normalized_shape = torch.Size(normalized_shape)
...@@ -75,6 +86,7 @@ class MixedFusedLayerNorm(torch.nn.Module): ...@@ -75,6 +86,7 @@ class MixedFusedLayerNorm(torch.nn.Module):
self.weight = Parameter(torch.Tensor(*normalized_shape)) self.weight = Parameter(torch.Tensor(*normalized_shape))
self.bias = Parameter(torch.Tensor(*normalized_shape)) self.bias = Parameter(torch.Tensor(*normalized_shape))
self.reset_parameters() self.reset_parameters()
self.no_persist_layer_norm = no_persist_layer_norm
def reset_parameters(self): def reset_parameters(self):
...@@ -85,6 +97,10 @@ class MixedFusedLayerNorm(torch.nn.Module): ...@@ -85,6 +97,10 @@ class MixedFusedLayerNorm(torch.nn.Module):
def forward(self, input): def forward(self, input):
return FusedLayerNormAffineFunction.apply( if self.no_persist_layer_norm:
input, self.weight, self.bias, self.normalized_shape,self.eps) return FusedLayerNormAffineFunction.apply(
input, self.weight, self.bias, self.normalized_shape, self.eps)
else:
return FastLayerNormFN.apply(
input, self.weight, self.bias, self.eps)
...@@ -423,7 +423,8 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -423,7 +423,8 @@ class ParallelTransformerLayer(MegatronModule):
# Layernorm on the input data. # Layernorm on the input data.
self.input_layernorm = LayerNorm( self.input_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon) eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm)
# Self attention. # Self attention.
self.self_attention = ParallelAttention( self.self_attention = ParallelAttention(
...@@ -438,7 +439,8 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -438,7 +439,8 @@ class ParallelTransformerLayer(MegatronModule):
# Layernorm on the attention output # Layernorm on the attention output
self.post_attention_layernorm = LayerNorm( self.post_attention_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon) eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm)
if self.layer_type == LayerType.decoder: if self.layer_type == LayerType.decoder:
self.inter_attention = ParallelAttention( self.inter_attention = ParallelAttention(
...@@ -449,7 +451,8 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -449,7 +451,8 @@ class ParallelTransformerLayer(MegatronModule):
# Layernorm on the attention output. # Layernorm on the attention output.
self.post_inter_attention_layernorm = LayerNorm( self.post_inter_attention_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon) eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm)
# MLP # MLP
self.mlp = ParallelMLP(init_method, self.mlp = ParallelMLP(init_method,
...@@ -602,7 +605,8 @@ class ParallelTransformer(MegatronModule): ...@@ -602,7 +605,8 @@ class ParallelTransformer(MegatronModule):
# Final layer norm before output. # Final layer norm before output.
self.final_layernorm = LayerNorm( self.final_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon) eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm)
def _get_layer(self, layer_number): def _get_layer(self, layer_number):
return self.layers[layer_number] return self.layers[layer_number]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment