Below we present the steps to run unsupervised and supervised trainining and evaluation of the retriever for [open domain question answering](https://arxiv.org/abs/2101.00408).
Below we present the steps to run unsupervised and supervised trainining and evaluation of the retriever for [open domain question answering](https://arxiv.org/abs/2101.00408).
### Unsupervised pretraining
## Retriever Training
1. Use `tools/preprocess_data.py` to preprocess the dataset for Inverse Cloze Task (ICT) task, which we call unsupervised pretraining. This script takes as input a corpus in loose JSON format and creates fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block and multiple blocks per document. Run [`tools/preprocess_data.py`](../../tools/preprocess_data.py) to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. We construct two datasets, one with the title of every document and another with the body.
#### Unsupervised pretraining
1. Use `tools/preprocess_data.py` to preprocess the dataset for Inverse Cloze Task (ICT), which we call unsupervised pretraining. This script takes as input a corpus in loose JSON format and creates fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block and multiple blocks per document. Run [`tools/preprocess_data.py`](../../tools/preprocess_data.py) to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. We construct two datasets, one with the title of every document and another with the body.
2. The [`examples/pretrain_ict.sh`](../../examples/pretrain_ict.sh) script runs a single GPU 217M parameter biencoder model for ICT retriever training. Single GPU training is primarily intended for debugging purposes, as the code is developed for distributed training. The script uses a pretrained BERT model with a batch size of 4096 (hence the need for a data parallel world size of 32).
2. The [`examples/pretrain_ict.sh`](../../examples/pretrain_ict.sh) script runs a single GPU 217M parameter biencoder model for ICT retriever training. Single GPU training is primarily intended for debugging purposes, as the code is developed for distributed training. The script uses a pretrained BERT model and we use a total of batch size of 4096 for the ICT training.
3. Evaluate the pretrained ICT model using [`examples/evaluate_retriever_nq.sh`](../../examples/evaluate_retriever_nq.sh) for natural question answering dataset.
3. Evaluate the pretrained ICT model using [`examples/evaluate_retriever_nq.sh`](../../examples/evaluate_retriever_nq.sh) for [Google's Natural Questions Open dataset](https://arxiv.org/pdf/1906.00300.pdf).
### Supervised finetuning
#### Supervised finetuning
1. Use the above pretrained ICT model to finetune using [Google's natural question answering dataset](https://ai.google.com/research/NaturalQuestions/). The script [`examples/finetune_retriever_distributed.sh`](../../examples/finetune_retriever_distributed.sh) provides an example for how to do this. Our finetuning consists of score scaling, longer training (80 epochs), and hard negative examples.
1. Use the above pretrained ICT model to finetune using [Google's Natural Questions Open dataset](https://github.com/google-research/language/tree/master/language/orqa). The script [`examples/finetune_retriever_distributed.sh`](../../examples/finetune_retriever_distributed.sh) provides an example for how to perform the training. Our finetuning process includes retriever score scaling and longer training (80 epochs) on top [DPR training](https://arxiv.org/abs/2004.04906).
2. Evaluate the finetuned model using the same evaluation script as mentioned above for the unsupervised model.
2. Evaluate the finetuned model using the same evaluation script as mentioned above for the unsupervised model.
More details on the retriever are available in [our paper](https://arxiv.org/abs/2101.00408).
More details on the retriever are available in [our paper](https://arxiv.org/abs/2101.00408).