Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
63121a9e
Commit
63121a9e
authored
May 19, 2021
by
Mostofa Patwary
Browse files
updating the scripts
parent
d078e54a
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
61 additions
and
2 deletions
+61
-2
examples/evaluate_retriever_nq.sh
examples/evaluate_retriever_nq.sh
+4
-1
examples/finetune_retriever_distributed.sh
examples/finetune_retriever_distributed.sh
+56
-0
megatron/model/biencoder_model.py
megatron/model/biencoder_model.py
+1
-1
No files found.
examples/evaluate_retriever_nq.sh
View file @
63121a9e
...
...
@@ -32,5 +32,8 @@ python tasks/main.py \
--num-workers
2
\
--faiss-use-gpu
\
--retriever-report-topk-accuracies
1 5 20 100
\
--fp16
--fp16
\
--indexer-log-interval
1000
\
--indexer-batch-size
128
examples/finetune_retriever_distributed.sh
0 → 100755
View file @
63121a9e
#!/bin/bash
# Finetune a BERT or pretrained ICT model using Google natural question data
# Datasets can be downloaded from the following link:
# https://github.com/facebookresearch/DPR/blob/master/data/download_data.py
WORLD_SIZE
=
8
DISTRIBUTED_ARGS
=
"--nproc_per_node
$WORLD_SIZE
\
--nnodes 1
\
--node_rank 0
\
--master_addr localhost
\
--master_port 6000"
CHECKPOINT_PATH
=
<Specify path
for
the finetuned retriever model>
# Load either of the below
BERT_LOAD_PATH
=
<Path of BERT pretrained model>
PRETRAINED_CHECKPOINT
=
<Path of Pretrained ICT model>
python
-m
torch.distributed.launch
$DISTRIBUTED_ARGS
./tasks/main.py
\
--task
RET-FINETUNE-NQ
\
--train-with-neg
\
--train-hard-neg
1
\
--pretrained-checkpoint
${
PRETRAINED_CHECKPOINT
}
\
--num-layers
12
\
--hidden-size
768
\
--num-attention-heads
12
\
--tensor-model-parallel-size
1
\
--tokenizer-type
BertWordPieceLowerCase
\
--train-data
nq-train.json
\
--valid-data
nq-dev.json
\
--save
${
CHECKPOINT_PATH
}
\
--load
${
CHECKPOINT_PATH
}
\
--vocab-file
bert-vocab.txt
\
--bert-load
${
BERT_LOAD_PATH
}
\
--save-interval
5000
\
--log-interval
10
\
--eval-interval
25000
\
--eval-iters
100
\
--indexer-log-interval
1000
\
--faiss-use-gpu
\
--DDP-impl
torch
\
--fp16
\
--retriever-report-topk-accuracies
1 5 10 20 100
\
--seq-length
512
\
--retriever-seq-length
256
\
--max-position-embeddings
512
\
--retriever-score-scaling
\
--epochs
80
\
--micro-batch-size
8
\
--eval-micro-batch-size
16
\
--indexer-batch-size
128
\
--lr
2e-5
\
--lr-warmup-fraction
0.01
\
--weight-decay
1e-1
megatron/model/biencoder_model.py
View file @
63121a9e
...
...
@@ -320,7 +320,7 @@ class PretrainedBertModel(MegatronModule):
def
load_state_dict
(
self
,
state_dict
,
strict
=
True
):
"""Customized load."""
print_rank_0
(
"loading
BERT
weights"
)
print_rank_0
(
"loading
pretrained
weights"
)
self
.
language_model
.
load_state_dict
(
state_dict
[
self
.
_language_model_key
],
strict
=
strict
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment