Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
45b364b1
"src/graph/sampling/randomwalks/randomwalks_impl.h" did not exist on "828a5e5bc6ffaa5716b02283874ec830e1b786fc"
Commit
45b364b1
authored
Mar 09, 2022
by
Lawrence McAfee
Browse files
consolidated reduce_grad's sub-methods (i.e., allreduce_embedding_grads)
parent
a9b1fc0a
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
127 additions
and
236 deletions
+127
-236
megatron/optimizer/distrib_optimizer.py
megatron/optimizer/distrib_optimizer.py
+74
-182
megatron/optimizer/optimizer.py
megatron/optimizer/optimizer.py
+51
-31
megatron/training.py
megatron/training.py
+2
-23
No files found.
megatron/optimizer/distrib_optimizer.py
View file @
45b364b1
...
...
@@ -68,7 +68,6 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
# Add shard, if within range.
if
param_local_end
>
param_local_start
:
param_local_shard
=
Shard
(
param_local_start
,
param_local_end
)
# param_world_shard = param_local_shard.normalize(param_world_start)
param_world_shard
=
param_local_shard
.
normalize
(
param_local_start
+
gbuf_world_shard
.
start
)
sub_param_start
=
max
(
0
,
gbuf_world_shard
.
start
-
param_world_start
)
...
...
@@ -79,8 +78,6 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
"param"
:
sub_param_shard
,
}
# pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
return
param_shard_map
@
classmethod
...
...
@@ -94,26 +91,19 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
gbuf_size
=
grad_buffer
.
numel
max_gbuf_shard_size
=
int
(
math
.
ceil
(
gbuf_size
/
data_parallel_world_size
))
# All world shards. (i.e., across all data parallel ranks)
gbuf_world_all_shards
=
[]
for
r
in
range
(
data_parallel_world_size
):
gbuf_world_start
=
r
*
max_gbuf_shard_size
gbuf_world_end
=
min
(
gbuf_size
,
gbuf_world_start
+
max_gbuf_shard_size
)
gbuf_world_shard
=
Shard
(
gbuf_world_start
,
gbuf_world_end
)
gbuf_world_all_shards
.
append
(
gbuf_world_shard
)
# >>>
# if max_gbuf_shard_size != gbuf_world_shard.size:
# raise Exception("%d: smaller, rank %d. [ %d -> %d vs. %d]" % (
# data_parallel_rank,
# r,
# gbuf_size,
# max_gbuf_shard_size,
# gbuf_world_shard.size,
# ))
# <<<
# Local DP's shards.
gbuf_world_shard
=
gbuf_world_all_shards
[
data_parallel_rank
]
gbuf_local_shard
=
gbuf_world_shard
.
normalize
()
#
P
aram shards.
#
Get each p
aram
's
shards.
param_shard_map
=
cls
.
get_model_gbuf_param_shard_map
(
model
,
dtype
,
gbuf_world_shard
)
...
...
@@ -127,8 +117,6 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
"max_shard_size"
:
max_gbuf_shard_size
,
}
# pax(0, {"data": data})
return
data
@
classmethod
...
...
@@ -140,28 +128,13 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
@
classmethod
def
get_param_gbuf_map
(
cls
,
model_gbuf_shards
):
'''Create a reverse of the model_gbuf_shards, for referencing in
opposite direction.'''
param_gbuf_map
=
{}
for
model_index
,
model_gbuf_shard_map
in
enumerate
(
model_gbuf_shards
):
for
dtype
,
gbuf_shard_map
in
model_gbuf_shard_map
.
items
():
for
param
,
param_shard_map
in
gbuf_shard_map
[
"param_map"
].
items
():
# assert param not in param_size_map
# param_size_map[param] = param_shard_map["local"].size
param_gbuf_map
[
param
]
=
(
model_index
,
dtype
)
# pax(0, {
# "dtype" : dtype,
# "gbuf_shard_map" : gbuf_shard_map,
# "param" : tp(param),
# "param_shard_map" : param_shard_map,
# })
# pax(0, {
# "model_gbuf_shards" : model_gbuf_shards,
# # "param_size_map" :
# # [ (str(p.shape), s) for p, s in param_size_map.items() ],
# "param_gbuf_map" : param_gbuf_map,
# })
return
param_gbuf_map
@
classmethod
...
...
@@ -190,82 +163,40 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
param_group_end
=
param_group_start
+
param_size
param_group_shard
=
Shard
(
param_group_start
,
param_group_end
)
# group_shard["max_size"] = gbuf_shard_map["max_shard_size"]
group_shard
[
"size"
]
+=
param_size
group_shard
[
"param_map"
][
param
]
=
param_group_shard
# pax(0, {"gbuf_shard_map": gbuf_shard_map})
# >>>
# if torch.distributed.get_rank() == 1:
# print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
# torch.distributed.get_rank(),
# group_index,
# param_size,
# str(tuple(param.shape)),
# ))
# <<<
# Squeeze zero-size group shards.
for
group_index
,
group_shard
in
enumerate
(
group_shards
):
group_shard
[
"orig_group"
]
=
param_groups
[
group_index
]
group_shards
=
[
g
for
g
in
group_shards
if
g
[
"size"
]
>
0
]
# [ ... x ... ] Synchronize group sizes across ranks.
# pax(0, {
# "param_group_map": [
# (g, str(p.shape))
# for p, g in param_group_map.items()
# ],
# "group_shards" : group_shards,
# })
return
group_shards
@
classmethod
def
allocate_main_param_shards
(
cls
,
opt_group_shards
):
# Allocate main param/grad shard.
# ** torch.nn.Parameter ??
# ** MemoryBuffer ??
# Allocator method.
allocate_shard
=
lambda
shard_size
,
dtype
:
torch
.
empty
(
(
shard_size
,),
dtype
=
dtype
,
device
=
torch
.
cuda
.
current_device
(),
requires_grad
=
True
)
#
main_param_shards = []
#
Allocate each group's param/grad shard.
for
group_index
,
group_shard
in
enumerate
(
opt_group_shards
):
# pax(0, {
# "group_shard" : group_shard,
# })
group_size
=
group_shard
[
"size"
]
assert
group_size
!=
0
,
"temporary check ... remove me."
# ** todo: for dtype in model_main_dtypes ........ **
# Allocate shard.
# if group_size == 0:
# main_param = None
# else:
main_param
=
allocate_shard
(
group_size
,
torch
.
float
)
main_param
.
grad
=
allocate_shard
(
group_size
,
torch
.
float
)
mpu
.
set_tensor_model_parallel_attributes
(
main_param
,
True
,
0
,
1
)
#
main_param_shards.append(main_
param
)
#
Update group's
param
.
group_shard
[
"orig_group"
][
"params"
]
=
[
main_param
]
# # Update optimizer group.
# self.optimizer.param_groups[group_index]["params"] = [ main_param ]
# pax(1, {
# "opt_group_shards" : opt_group_shards,
# "main_param_shards" : main_param_shards,
# })
# return main_param_shards
def
__init__
(
self
,
optimizer
,
clip_grad
,
log_num_zeros_in_grad
,
params_have_main_grad
,
use_contiguous_buffers_in_local_ddp
,
...
...
@@ -276,10 +207,10 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
params_have_main_grad
,
use_contiguous_buffers_in_local_ddp
,
bf16
,
grad_scaler
,
models
)
# >>>
# Verify that contiguous buffers are being used
# - Note: this should already be checked in arguments.py
args
=
get_args
()
assert
args
.
use_contiguous_buffers_in_local_ddp
# already checked in args
# <<<
assert
args
.
use_contiguous_buffers_in_local_ddp
# Model grad buffer shards.
self
.
model_gbuf_shards
=
[]
...
...
@@ -295,14 +226,6 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
# Allocate main param shards.
self
.
allocate_main_param_shards
(
self
.
opt_group_shards
)
# >>>
# pax(0, {
# "model_gbuf_shards" : self.model_gbuf_shards,
# "opt_group_shards" : self.opt_group_shards,
# "main_param_shards" : self.main_param_shards,
# })
# <<<
# Update optimizer groups.
# - Also, leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors.
...
...
@@ -310,27 +233,10 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
[
g
[
"orig_group"
]
for
g
in
self
.
opt_group_shards
]
self
.
optimizer
.
load_state_dict
(
self
.
optimizer
.
state_dict
())
# pax(0, {
# # "opt_group_shards" : self.opt_group_shards,
# # "param_groups" : self.optimizer.param_groups,
# "optimizer" : self.optimizer,
# "optimizer / state" : self.optimizer.state,
# })
# pax(1, {
# "optimizer" : self.optimizer,
# **{"optimizer / param_groups / %d" % i : g
# for i, g in enumerate(self.optimizer.param_groups)},
# "optimizer / state" : self.optimizer.state,
# "optimizer / state_dict" : self.optimizer.state_dict(),
# })
# Initialize main params.
self
.
_copy_model_params_to_main_params
()
def
get_model_parallel_group
(
self
):
# >>>
# i.e., no param replication across this group
# <<<
return
None
# @staticmethod
...
...
@@ -378,7 +284,6 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
def
get_main_grads
(
self
):
return
[
p
.
grad
for
p
in
self
.
get_main_params
()
]
def
get_main_param
(
self
,
group_index
):
# return self.optimizer.param_groups[group_index]["params"][0]
return
self
.
get_main_params
()[
group_index
]
def
get_main_grad
(
self
,
group_index
):
return
self
.
get_main_param
(
group_index
).
grad
...
...
@@ -476,90 +381,77 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
return
gbuf_view_items
def
reduce_grads
(
self
,
model
):
# def reduce_grads(self, model):
def
reduce_grads
(
self
,
args
,
timers
):
# >>>
from
torch.nn.parallel.distributed
import
DistributedDataParallel
as
torchDDP
#
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from
megatron
import
get_args
from
megatron
import
get_timers
from
megatron.model
import
DistributedDataParallel
as
LocalDDP
from
megatron.model
import
Float16Module
from
megatron.utils
import
unwrap_model
#
from megatron import get_args
#
from megatron import get_timers
#
from megatron.model import DistributedDataParallel as LocalDDP
#
from megatron.model import Float16Module
#
from megatron.utils import unwrap_model
args
=
get_args
()
timers
=
get_timers
()
#
args = get_args()
#
timers = get_timers()
# <<<
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Sync word embedding params.
# ... todo ...
# All-reduce word_embeddings' grad across first and last stages to ensure
# that word_embeddings parameters stay in sync.
# This should only run for models that support pipelined model parallelism
# (BERT and GPT-2).
# All-reduce embedding grads.
timers
(
'backward-embedding-all-reduce'
).
start
()
if
mpu
.
is_rank_in_embedding_group
(
ignore_virtual
=
True
)
and
\
mpu
.
get_pipeline_model_parallel_world_size
()
>
1
:
# >>>
# raise Exception("[fix] ready for weight sync?")
# <<<
if
mpu
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
unwrapped_model
=
model
[
0
]
elif
mpu
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
unwrapped_model
=
model
[
-
1
]
else
:
# We do not support the interleaved schedule for T5 yet.
unwrapped_model
=
model
[
0
]
unwrapped_model
=
unwrap_model
(
unwrapped_model
,
(
torchDDP
,
LocalDDP
,
Float16Module
))
if
unwrapped_model
.
share_word_embeddings
:
word_embeddings_weight
=
unwrapped_model
.
word_embeddings_weight
()
# >>>
if
args
.
DDP_impl
==
'local'
:
grad
=
word_embeddings_weight
.
main_grad
else
:
raise
Exception
(
"only 'main_grad' supported for distrib-opt."
)
grad
=
word_embeddings_weight
.
grad
torch
.
distributed
.
all_reduce
(
grad
,
group
=
mpu
.
get_embedding_group
())
# +++
# grad_shard = optimizer.get_grad_shard(word_embeddings)
# torch.distributed.all_reduce(grad_shard,
# group=mpu.get_embedding_group())
# <<<
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Sync T5 position embedding params.
# ... todo ...
# All-reduce position_embeddings grad across first (encoder) and split (decoder)
# stages to ensure that position embeddings parameters stay in sync.
# This should only run for T5 models with pipeline parallelism
if
mpu
.
is_rank_in_position_embedding_group
()
and
\
mpu
.
get_pipeline_model_parallel_world_size
()
>
1
and
\
args
.
pipeline_model_parallel_split_rank
is
not
None
:
# >>>
raise
Exception
(
"[fix] ready for t5 sync?"
)
# <<<
unwrapped_model
=
model
[
0
]
unwrapped_model
=
unwrap_model
(
unwrapped_model
,
(
torchDDP
,
LocalDDP
,
Float16Module
))
assert
args
.
DDP_impl
==
'local'
,
\
'T5 model is only supported with local DDP mode'
# >>>
grad
=
unwrapped_model
.
language_model
.
embedding
.
position_embeddings
.
weight
.
main_grad
torch
.
distributed
.
all_reduce
(
grad
,
group
=
mpu
.
get_position_embedding_group
())
# +++
# grad_shard = optimizer.get_grad_shard(
# unwrapped_model.language_model.embedding.position_embeddings.weight)
# torch.distributed.all_reduce(grad_shard,
# group=mpu.get_position_embedding_group())
# <<<
self
.
allreduce_embedding_grads
()
timers
(
'backward-embedding-all-reduce'
).
stop
()
# # All-reduce word_embeddings' grad across first and last stages to ensure
# # that word_embeddings parameters stay in sync.
# # This should only run for models that support pipelined model parallelism
# # (BERT and GPT-2).
# timers('backward-embedding-all-reduce').start()
# if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
# mpu.get_pipeline_model_parallel_world_size() > 1:
# if mpu.is_pipeline_first_stage(ignore_virtual=True):
# unwrapped_model = model[0]
# elif mpu.is_pipeline_last_stage(ignore_virtual=True):
# unwrapped_model = model[-1]
# else: # We do not support the interleaved schedule for T5 yet.
# unwrapped_model = model[0]
# unwrapped_model = unwrap_model(
# unwrapped_model, (torchDDP, LocalDDP, Float16Module))
# if unwrapped_model.share_word_embeddings:
# word_embeddings_weight = unwrapped_model.word_embeddings_weight()
# if args.DDP_impl == 'local':
# grad = word_embeddings_weight.main_grad
# else:
# raise Exception("only 'main_grad' supported for distrib-opt.")
# grad = word_embeddings_weight.grad
# torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
# # All-reduce position_embeddings grad across first (encoder) and split (decoder)
# # stages to ensure that position embeddings parameters stay in sync.
# # This should only run for T5 models with pipeline parallelism
# if mpu.is_rank_in_position_embedding_group() and \
# mpu.get_pipeline_model_parallel_world_size() > 1 and \
# args.pipeline_model_parallel_split_rank is not None:
# # >>>
# raise Exception("[fix] ready for t5 sync?")
# # <<<
# unwrapped_model = model[0]
# unwrapped_model = unwrap_model(
# unwrapped_model, (torchDDP, LocalDDP, Float16Module))
# assert args.DDP_impl == 'local', \
# 'T5 model is only supported with local DDP mode'
# # >>>
# grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
# torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
# # +++
# # grad_shard = optimizer.get_grad_shard(
# # unwrapped_model.language_model.embedding.position_embeddings.weight)
# # torch.distributed.all_reduce(grad_shard,
# # group=mpu.get_position_embedding_group())
# # <<<
# timers('backward-embedding-all-reduce').stop()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Reduce-scatter.
# timers('backward-params-reduce-scatter').start()
...
...
megatron/optimizer/optimizer.py
View file @
45b364b1
...
...
@@ -183,33 +183,15 @@ class MegatronOptimizer(ABC):
def
gather_params
(
self
,
ITERATION
):
pass
def
reduce_grads
(
self
,
model
):
def
allreduce_word_embedding_grads
(
self
):
'''
All-reduce word embedding grads.
# >>>
from
torch.nn.parallel.distributed
import
DistributedDataParallel
as
torchDDP
from
megatron
import
get_args
from
megatron
import
get_timers
from
megatron.model
import
DistributedDataParallel
as
LocalDDP
from
megatron.model
import
Float16Module
from
megatron.utils
import
unwrap_model
args
=
get_args
()
timers
=
get_timers
()
# <<<
# All-reduce if needed.
if
args
.
DDP_impl
==
'local'
:
timers
(
'backward-params-all-reduce'
).
start
()
for
model_module
in
model
:
model_module
.
allreduce_gradients
()
timers
(
'backward-params-all-reduce'
).
stop
()
Reduce grads across first and last stages to ensure that word_embeddings
parameters stay in sync. This should only run for models that support
pipelined model parallelism (BERT and GPT-2).
'''
# All-reduce word_embeddings' grad across first and last stages to ensure
# that word_embeddings parameters stay in sync.
# This should only run for models that support pipelined model parallelism
# (BERT and GPT-2).
timers
(
'backward-embedding-all-reduce'
).
start
()
if
mpu
.
is_rank_in_embedding_group
(
ignore_virtual
=
True
)
and
\
mpu
.
get_pipeline_model_parallel_world_size
()
>
1
:
# >>>
...
...
@@ -232,15 +214,16 @@ class MegatronOptimizer(ABC):
grad
=
word_embeddings_weight
.
grad
torch
.
distributed
.
all_reduce
(
grad
,
group
=
mpu
.
get_embedding_group
())
# All-reduce position_embeddings grad across first (encoder) and split (decoder)
# stages to ensure that position embeddings parameters stay in sync.
# This should only run for T5 models with pipeline parallelism
def
allreduce_position_embedding_grads
(
self
):
'''
All-reduce position_embeddings grad across first (encoder) and
split (decoder) stages to ensure that position embeddings parameters
stay in sync. This should only run for T5 models with pipeline
parallelism.
'''
if
mpu
.
is_rank_in_position_embedding_group
()
and
\
mpu
.
get_pipeline_model_parallel_world_size
()
>
1
and
\
args
.
pipeline_model_parallel_split_rank
is
not
None
:
# >>>
raise
Exception
(
"[main] ready for t5 sync?"
)
# <<<
unwrapped_model
=
model
[
0
]
unwrapped_model
=
unwrap_model
(
unwrapped_model
,
(
torchDDP
,
LocalDDP
,
Float16Module
))
...
...
@@ -248,8 +231,45 @@ class MegatronOptimizer(ABC):
'T5 model is only supported with local DDP mode'
grad
=
unwrapped_model
.
language_model
.
embedding
.
position_embeddings
.
weight
.
main_grad
torch
.
distributed
.
all_reduce
(
grad
,
group
=
mpu
.
get_position_embedding_group
())
def
allreduce_embedding_grads
(
self
):
self
.
allreduce_word_embedding_grads
()
self
.
allreduce_position_embedding_grads
()
# def reduce_grads(self, model):
def
reduce_grads
(
self
,
args
,
timers
):
# pax(0, {
# "*models" : self.models,
# "model" : model,
# })
# >>>
# from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
# from megatron import get_args
# from megatron import get_timers
# from megatron.model import DistributedDataParallel as LocalDDP
# from megatron.model import Float16Module
# from megatron.utils import unwrap_model
# args = get_args()
# timers = get_timers()
# <<<
# All-reduce if needed.
if
args
.
DDP_impl
==
'local'
:
timers
(
'backward-params-all-reduce'
).
start
()
for
model_module
in
self
.
models
:
model_module
.
allreduce_gradients
()
timers
(
'backward-params-all-reduce'
).
stop
()
# All-reduce embedding grads.
timers
(
'backward-embedding-all-reduce'
).
start
()
self
.
allreduce_embedding_grads
()
timers
(
'backward-embedding-all-reduce'
).
stop
()
# class BaseFloat16Optimizer(MegatronOptimizer):
class
MixedPrecisionOptimizer
(
MegatronOptimizer
):
...
...
megatron/training.py
View file @
45b364b1
...
...
@@ -436,29 +436,8 @@ def train_step(forward_step_func, data_iterator,
# <<<
# >>>
# Reduce gradients. (with distributed optimizer option, optimizer
# now responsible for reducing gradients)
optimizer
.
reduce_grads
(
model
)
# <<<
# >>>
# r = mpu.get_data_parallel_rank()
# w = mpu.get_data_parallel_world_size()
# gbufs = []
# for m in model:
# for g in m._grad_buffers.values():
# t = g.data
# n = t.nelement()
# shard = int(n / w)
# start_index = r * shard
# end_index = min(n, start_index + shard)
# gbufs.append(t[start_index:end_index])
# pax(1, {"gbufs": gbufs})
# <<<
# >>>
# from lutil import pax
# pax(0, {"optimizer": optimizer})
# Reduce gradients.
optimizer
.
reduce_grads
(
args
,
timers
)
# model)
# <<<
# Update parameters.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment