Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
4018d92c
Commit
4018d92c
authored
Dec 02, 2021
by
rprenger
Browse files
Faster Switch code
parent
d4169684
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
113 additions
and
3 deletions
+113
-3
megatron/model/transformer.py
megatron/model/transformer.py
+45
-3
run.sh
run.sh
+68
-0
No files found.
megatron/model/transformer.py
View file @
4018d92c
...
@@ -95,6 +95,49 @@ class ParallelMLP(MegatronModule):
...
@@ -95,6 +95,49 @@ class ParallelMLP(MegatronModule):
return
output
,
output_bias
return
output
,
output_bias
class
SwitchMLP
(
MegatronModule
):
"""
Routes input to one of N MLP "experts"
"""
def
__init__
(
self
,
init_method
,
output_layer_init_method
,
num_experts
):
super
(
SwitchMLP
,
self
).
__init__
()
args
=
get_args
()
self
.
router
=
torch
.
nn
.
Linear
(
args
.
hidden_size
,
num_experts
)
self
.
experts
=
torch
.
nn
.
ModuleList
()
for
i
in
range
(
num_experts
):
self
.
experts
.
append
(
ParallelMLP
(
init_method
,
output_layer_init_method
))
def
forward
(
self
,
hidden_states
):
# hidden_states: [b, s, h]
b
=
hidden_states
.
size
(
0
)
s
=
hidden_states
.
size
(
1
)
h
=
hidden_states
.
size
(
2
)
route
=
self
.
router
(
hidden_states
)
route
=
torch
.
nn
.
functional
.
softmax
(
route
,
dim
=
2
)
max_prob
,
max_ind
=
torch
.
max
(
route
,
dim
=
2
)
max_prob
=
torch
.
unsqueeze
(
max_prob
,
2
)
hidden_states
=
hidden_states
.
permute
(
2
,
0
,
1
).
view
(
hidden_states
.
size
(
2
),
-
1
).
permute
(
1
,
0
).
unsqueeze
(
1
)
max_prob
=
max_prob
.
permute
(
2
,
0
,
1
).
view
(
max_prob
.
size
(
2
),
-
1
).
permute
(
1
,
0
).
unsqueeze
(
1
)
max_ind
=
max_ind
.
view
(
-
1
)
output_total
=
torch
.
empty_like
(
hidden_states
)
output_bias_total
=
torch
.
empty_like
(
hidden_states
)
for
expert_num
,
expert
in
enumerate
(
self
.
experts
):
ind
=
(
max_ind
==
expert_num
).
nonzero
().
unsqueeze
(
2
).
repeat
(
1
,
1
,
h
)
hidden
=
torch
.
gather
(
hidden_states
,
0
,
ind
)
output
,
output_bias
=
expert
(
hidden
)
output_bias
=
output_bias
.
expand_as
(
output
)
output_total
.
scatter_
(
0
,
ind
,
output
)
output_bias_total
.
scatter_
(
0
,
ind
,
output_bias
)
output_total
=
output_total
*
max_prob
output_bias_total
=
output_bias_total
*
max_prob
output_total
=
output_total
.
permute
(
2
,
0
,
1
).
view
(
h
,
b
,
s
).
permute
(
1
,
2
,
0
)
output_bias_total
=
output_bias_total
.
permute
(
2
,
0
,
1
).
view
(
h
,
b
,
s
).
permute
(
1
,
2
,
0
)
return
output_total
,
output_bias_total
class
ParallelAttention
(
MegatronModule
):
class
ParallelAttention
(
MegatronModule
):
"""Parallel self-attention layer abstract class.
"""Parallel self-attention layer abstract class.
...
@@ -455,8 +498,7 @@ class ParallelTransformerLayer(MegatronModule):
...
@@ -455,8 +498,7 @@ class ParallelTransformerLayer(MegatronModule):
no_persist_layer_norm
=
args
.
no_persist_layer_norm
)
no_persist_layer_norm
=
args
.
no_persist_layer_norm
)
# MLP
# MLP
self
.
mlp
=
ParallelMLP
(
init_method
,
self
.
mlp
=
SwitchMLP
(
init_method
,
output_layer_init_method
,
$
{
NUMEXPERTS
})
output_layer_init_method
)
def
forward
(
self
,
hidden_states
,
attention_mask
,
def
forward
(
self
,
hidden_states
,
attention_mask
,
encoder_output
=
None
,
enc_dec_attn_mask
=
None
,
encoder_output
=
None
,
enc_dec_attn_mask
=
None
,
...
@@ -531,7 +573,7 @@ class ParallelTransformerLayer(MegatronModule):
...
@@ -531,7 +573,7 @@ class ParallelTransformerLayer(MegatronModule):
residual
=
layernorm_output
residual
=
layernorm_output
else
:
else
:
residual
=
layernorm_input
residual
=
layernorm_input
# re-enable torch grad to enable fused optimization.
# re-enable torch grad to enable fused optimization.
with
torch
.
enable_grad
():
with
torch
.
enable_grad
():
output
=
bias_dropout_add_func
(
output
=
bias_dropout_add_func
(
...
...
run.sh
0 → 100755
View file @
4018d92c
#!/bin/bash
#SBATCH -A adlr -J adlr-nlp-largelm:switch_RUNVAR_expert -p luna -t 4:00:00 --nodes=1 --exclusive --mem=0 --overcommit --ntasks-per-node=8 --dependency=singleton
NAME
=
"gpt3-357m_switch_RUNVAR_expert"
DIR
=
`
pwd
`
DATETIME
=
`
date
+
'date_%y-%m-%d_time_%H-%M-%S'
`
mkdir
-p
$DIR
/logs
CHECKPOINT_DIR
=
"/lustre/fsw/adlr/adlr-nlp/rprenger/switch/
${
NAME
}
"
TENSORBOARD_DIR
=
"
${
CHECKPOINT_DIR
}
/tensorboard"
mkdir
-p
${
TENSORBOARD_DIR
}
# Get the data blend
.
/lustre/fsw/adlr/adlr-nlp/data/pile-cc1-cc2-shuf/gpt3_blend.sh
BPE_DIR
=
"/lustre/fsw/adlr/adlr-nlp/data/pile-cc1-cc2-shuf/bpe"
options
=
"
\
--exit-duration-in-mins 230
\
--tensor-model-parallel-size 1
\
--pipeline-model-parallel-size 1
\
--num-layers 24
\
--hidden-size 1024
\
--num-attention-heads 16
\
--seq-length 2048
\
--max-position-embeddings 2048
\
--micro-batch-size 4
\
--global-batch-size 256
\
--train-samples 192000000
\
--lr-decay-samples 166400000
\
--lr-warmup-samples 162761
\
--lr 3.0e-4
\
--min-lr 3.0e-5
\
--lr-decay-style cosine
\
--log-interval 100
\
--eval-iters 50
\
--eval-interval 2000
\
--data-path
${
DATA_BLEND
}
\
--vocab-file
${
BPE_DIR
}
/gpt2-vocab.json
\
--merge-file
${
BPE_DIR
}
/gpt2-merges.txt
\
--save-interval 10000
\
--save
${
CHECKPOINT_DIR
}
\
--load
${
CHECKPOINT_DIR
}
\
--split 98,2,0
\
--clip-grad 1.0
\
--weight-decay 0.1
\
--adam-beta1 0.9
\
--adam-beta2 0.95
\
--init-method-std 0.02
\
--log-params-norm
\
--log-num-zeros-in-grad
\
--fp16
\
--DDP-impl torch
\
--tensorboard-dir
${
TENSORBOARD_DIR
}
\
--checkpoint-activations "
run_cmd
=
"cd
$DIR
&& python pretrain_gpt.py
${
options
}
"
srun
-l
\
--container-image
"/lustre/fsw/adlr/adlr-nlp/images/pytorch+bf16_nccl_fusion.sqsh"
\
--container-mounts
"/lustre/fsw/adlr:/lustre/fsw/adlr,/home/rprenger/workspace:/home/rprenger/workspace"
\
--ntasks-per-node
8
\
--output
=
$DIR
/logs/%x_%j_
$DATETIME
.log sh
-c
"
${
run_cmd
}
"
set
+x
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment