Commit 26ea8314 authored by Vijay Korthikanti's avatar Vijay Korthikanti
Browse files

fixing the corner case pp=2

parent 81ad628e
......@@ -51,8 +51,8 @@ class MegatronModule(torch.nn.Module):
def word_embeddings_weight(self):
if not mpu.is_pipeline_last_stage(ignore_virtual=True) or \
mpu.get_pipeline_model_parallel_world_size() == 1:
if hasattr(self.language_model, 'embedding') and \
self.language_model.embedding is not None:
return self.language_model.embedding.word_embeddings.weight
else:
if not self.share_word_embeddings:
......@@ -99,8 +99,9 @@ class MegatronModule(torch.nn.Module):
# Zero out initial weights for decoder embedding.
# NOTE: We don't currently support T5 with the interleaved schedule.
if not mpu.is_pipeline_first_stage(ignore_virtual=True) and \
not mpu.is_pipeline_last_stage(ignore_virtual=True) and \
mpu.is_rank_in_embedding_group():
mpu.is_rank_in_embedding_group() and \
hasattr(self.language_model, 'embedding') and \
self.language_model.embedding is not None:
self.language_model.embedding.zero_parameters()
# Ensure that first and last stages have the same initial parameter
......@@ -109,21 +110,18 @@ class MegatronModule(torch.nn.Module):
if mpu.is_rank_in_embedding_group():
torch.distributed.all_reduce(self.word_embeddings_weight().data,
group=mpu.get_embedding_group())
# All-reduce other embeddings as well as necessary. The last stage
# does not have these other embeddings, so just create placeholder
# tensors of the right shape with all zeros.
# NOTE: We don't currently support T5 with the interleaved schedule.
if args.pipeline_model_parallel_split_rank is not None:
# TODO: Support tokentype embedding.
dimensions = (args.max_position_embeddings, args.hidden_size)
if mpu.is_pipeline_last_stage(ignore_virtual=True):
position_embeddings = torch.nn.Embedding(*dimensions).cuda()
position_embeddings.weight.data.fill_(0)
else:
self.language_model.embedding.cuda()
position_embeddings = self.language_model.embedding.position_embeddings
torch.distributed.all_reduce(position_embeddings.weight.data,
group=mpu.get_embedding_group())
# All-reduce other embeddings as well as necessary. The last stage
# does not have these other embeddings, so just create placeholder
# tensors of the right shape with all zeros.
# NOTE: We don't currently support T5 with the interleaved schedule.
if mpu.is_rank_in_position_embedding_group() and \
args.pipeline_model_parallel_split_rank is not None:
# TODO: Support tokentype embedding.
self.language_model.embedding.cuda()
position_embeddings = self.language_model.embedding.position_embeddings
torch.distributed.all_reduce(position_embeddings.weight.data,
group=mpu.get_position_embedding_group())
else:
print("WARNING! Distributed processes aren't initialized, so "
"word embeddings in the last layer are not initialized. "
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment