Commit 26d6aff4 authored by Raul Puri's avatar Raul Puri
Browse files

batch sampler interleave flag

parent 6106127c
......@@ -80,10 +80,17 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
implementation is at the batch sampler level, instead of just the
sampler level. This allows wrapping of arbitrary data samplers
(sequential, random, WeightedRandomSampler, etc.) with this batch
sampler."""
sampler.
The `interleave` argument specifies how to distribute a batch.
For the following batch [0,1,2,3,4,5,6,7] and data parallelism of 2
specifying True will result in the following samples for each gpu:
GPU0: [0,2,4,6] GPU1: [1,3,5,7]
specifying False will result in the following samples:
GPU0: [0,1,2,3] GPU1: [4,5,6,7]"""
def __init__(self, sampler, batch_size, drop_last, rank=-1,
world_size=2, wrap_last=False):
world_size=2, wrap_last=False, interleave=False):
super(DistributedBatchSampler, self).__init__(sampler, batch_size,
drop_last)
if rank == -1:
......@@ -95,6 +102,7 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
self.wrap_around = 0
self.wrap_last = wrap_last
self.start_iter = 0
self.interleave = interleave
def __iter__(self):
batch = []
......@@ -130,6 +138,8 @@ class DistributedBatchSampler(data.sampler.BatchSampler):
def _batch(self, batch):
"""extracts samples only pertaining to this worker's batch"""
if self.interleave:
return batch[self.rank:self.batch_size:self.world_size]
start = self.rank * self.batch_size // self.world_size
end = (self.rank + 1) * self.batch_size // self.world_size
return batch[start:end]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment