Commit 230633f8 authored by Ryan Prenger's avatar Ryan Prenger
Browse files

Merge branch 'debug_harness' into 'main'

Changing API to fix LM Harness Evaluation and make API less confusing/terrible

See merge request ADLR/megatron-lm!326
parents c81bf127 593b47b4
......@@ -12,10 +12,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import torch
import json
from flask import Flask, request, jsonify, current_app
from flask_restful import Resource, Api
from megatron import get_args
from megatron import mpu
from megatron.text_generation_utils import generate
......@@ -35,17 +36,20 @@ class MegatronGenerate(Resource):
def put(self):
args = get_args()
print("request IP: " + str(request.remote_addr))
print(json.dumps(request.get_json()),flush=True)
print("current time: ", datetime.datetime.now())
sentences = request.get_json()["sentences"]
if len(sentences) > 128:
return "Maximum number of sentences is 128", 400
max_len = 64 # Choosing hopefully sane default. Full sequence is slow
if "max_len" in request.get_json():
max_len = request.get_json()["max_len"]
if not isinstance(max_len, int):
return "max_len must be an integer greater than 0"
if max_len < 1:
return "max_len must be an integer greater than 0"
tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow
if "tokens_to_generate" in request.get_json():
tokens_to_generate = request.get_json()["tokens_to_generate"]
if not isinstance(tokens_to_generate, int):
return "tokens_to_generate must be an integer greater than 0"
if tokens_to_generate < 1:
return "tokens_to_generate must be an integer greater than 0"
all_probs = False
if "all_probs" in request.get_json():
......@@ -54,7 +58,7 @@ class MegatronGenerate(Resource):
return "all_probs must be a boolean value"
MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate
resp_sentences, resp_sentences_seg, output_logits, full_logits, tokens = generate(self.model, sentences, max_len, all_probs)
resp_sentences, resp_sentences_seg, output_logits, full_logits, tokens = generate(self.model, sentences, tokens_to_generate, all_probs)
if all_probs:
return jsonify({"sentences": resp_sentences,
"segments": resp_sentences_seg,
......@@ -66,15 +70,12 @@ class MegatronGenerate(Resource):
"segments": resp_sentences_seg,
"logits": output_logits})
def index():
return current_app.send_static_file('index.html')
class MegatronServer(object):
def __init__(self, model):
self.app = Flask(__name__)
self.app.add_url_rule('/', 'index', index)
self.app = Flask(__name__, static_folder='static', static_url_path='')
self.app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
api = Api(self.app)
api.add_resource(MegatronGenerate, '/generate', resource_class_args=[model])
def run(self, url):
self.app.run(url, threaded=False, debug=False)
self.app.run(url, threaded=True, debug=False)
......@@ -105,12 +105,12 @@ def tokenize_batch(sentences, max_len):
context_length_tensor = torch.cuda.LongTensor(context_lengths)
return context_tokens_tensor, context_length_tensor
def send_generate_info(context_tokens_tensor, context_length_tensor, max_len, all_probs):
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
"""
Needs to be synced up with receive_generate_info
"""
# Send the sizes of the tensors
input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), max_len, all_probs]
input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs]
input_info_tensor = torch.cuda.LongTensor(input_info)
torch.distributed.broadcast(input_info_tensor, 0)
......@@ -126,7 +126,7 @@ def receive_generate_info():
torch.distributed.broadcast(input_info_tensor, 0)
batch_size = input_info_tensor[0].item()
seq_len = input_info_tensor[1].item()
max_len = input_info_tensor[2].item()
tokens_to_generate = input_info_tensor[2].item()
all_probs = input_info_tensor[3].item()
context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
......@@ -136,16 +136,16 @@ def receive_generate_info():
torch.distributed.broadcast(context_length_tensor, 0)
torch.distributed.broadcast(context_tokens_tensor, 0)
return context_length_tensor, context_tokens_tensor, max_len, all_probs
return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs
def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len, all_probs):
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
context_length = context_length_tensor.min().item()
tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
context_length_tensor,
attention_mask, position_ids,
max_len,
tokens_to_generate,
all_probs)
for tokens, lengths, output_logits, full_logits in batch_token_iterator:
context_length += 1
......@@ -176,19 +176,19 @@ def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len
if tokens is not None:
return tokens[:, :context_length], output_logits, full_logits
def generate(model, sentences=None, max_len=0, all_probs=False):
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False):
model.eval()
if torch.distributed.get_rank() == 0:
context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, max_len)
send_generate_info(context_tokens_tensor, context_length_tensor, max_len, all_probs)
context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate)
send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
else:
context_length_tensor, context_tokens_tensor, max_len, all_probs = receive_generate_info()
output = synced_generate(model, context_tokens_tensor, context_length_tensor, max_len, all_probs)
context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs = receive_generate_info()
output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
if output is not None:
decode_tokens, output_logits, full_logits = output
if torch.distributed.get_rank() == 0:
args = get_args()
tokenizer = get_tokenizer()
resp_sentences = []
......@@ -207,7 +207,7 @@ def generate(model, sentences=None, max_len=0, all_probs=False):
output_logits = output_logits.cpu().numpy().tolist()
if all_probs:
full_logits = full_logits.cpu().numpy().tolist()
return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
......@@ -215,12 +215,13 @@ def generate_samples_eval(model, context, max_gen_length, eos_token_id):
This function is here to provide an a matching API for a legacy task
This implementation hasn't been tested yet to make sure it matches
"""
assert False, "Implementation untested"
#assert False, "Implementation untested"
args = get_args()
args.eos_id = eos_token_id
raw_text_len = len(context)
resp_sentences = generate(model, [context], max_gen_length)
return resp_sentences[0][raw_text_len:]
if resp_sentences:
return resp_sentences[0][raw_text_len:]
def switch(val1, val2, boolean):
boolean = boolean.type_as(val1)
......@@ -263,7 +264,7 @@ def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
def sample_sequence_batch(model, context_tokens, context_lengths,
attention_mask, position_ids,
maxlen=None, all_probs=False, type_ids=None):
tokens_to_generate, all_probs=False, type_ids=None):
args = get_args()
tokenizer = get_tokenizer()
......@@ -279,21 +280,18 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
eos_id = tokenizer.eod
counter = 0
org_context_length = context_length
layer_past = None
batch_size = context_tokens.size(0)
is_done = torch.zeros([batch_size]).byte().cuda()
tokens = context_tokens
output_logits = None
if maxlen is None:
maxlen = args.seq_length - 1
maxlen = maxlen + org_context_length
if maxlen > (org_context_length + args.out_seq_length):
maxlen = org_context_length + args.out_seq_length
# Generate enough tokens for the longest sequence
maxlen = tokens_to_generate + context_lengths.max().item()
if maxlen > args.seq_length:
maxlen = args.seq_length
lengths = torch.ones([batch_size]).long().cuda() * maxlen
......@@ -357,7 +355,6 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
if all_probs:
full_logits = torch.cat([full_logits, output_context], 1)
#output_logits = torch.cat([output_logits, output[:,context_length,new_tokens]], 1)
src = mpu.get_pipeline_model_parallel_last_rank()
group = mpu.get_embedding_group()
torch.distributed.broadcast(new_tokens, src, group)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment