learning_rates.py 5.92 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
17
"""Learning rate decay functions."""

Raul Puri's avatar
Raul Puri committed
18
19
import math

20
from megatron import print_rank_0
21

Mohammad's avatar
Mohammad committed
22
23
class AnnealingLR(object):
    """Anneals the learning rate."""
Raul Puri's avatar
Raul Puri committed
24

25
26
27
    def __init__(self, optimizer, max_lr, min_lr,
                 warmup_steps, decay_steps,
                 decay_style, num_steps,
28
29
                 use_checkpoint_lr_scheduler=True,
                 override_lr_scheduler=False):
Mohammad's avatar
Mohammad committed
30
31

        # Class values.
Raul Puri's avatar
Raul Puri committed
32
        self.optimizer = optimizer
mohammad's avatar
mohammad committed
33

34
        self.max_lr = float(max_lr)
35
        self.min_lr = min_lr
mohammad's avatar
mohammad committed
36
        assert self.min_lr >= 0.0
37
        assert self.max_lr >= self.min_lr
mohammad's avatar
mohammad committed
38

39
40
41
42
43
        self.warmup_steps = warmup_steps
        self.num_steps = num_steps
        self.decay_steps = decay_steps
        assert self.decay_steps > 0
        assert self.warmup_steps < self.decay_steps
mohammad's avatar
mohammad committed
44

Mohammad's avatar
Mohammad committed
45
        self.decay_style = decay_style
mohammad's avatar
mohammad committed
46

47
48
49
50
51
        self.override_lr_scheduler = override_lr_scheduler
        self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
        if self.override_lr_scheduler:
            assert not self.use_checkpoint_lr_scheduler, 'both override and '\
                'use-checkpoint are set.'
mohammad's avatar
mohammad committed
52

Mohammad's avatar
Mohammad committed
53
        # Set the learning rate
54
        self.step(step_num=self.num_steps)
Mohammad's avatar
Mohammad committed
55
56
57

        print_rank_0('> learning rate decay style: {}'.format(self.decay_style))

mohammad's avatar
mohammad committed
58

Raul Puri's avatar
Raul Puri committed
59
    def get_lr(self):
Mohammad's avatar
Mohammad committed
60
61
62
        """Learning rate decay functions from:
              https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""

mohammad's avatar
mohammad committed
63
        # Use linear warmup for the initial part.
64
65
66
        if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
            return self.max_lr * float(self.num_steps) / \
                float(self.warmup_steps)
mohammad's avatar
mohammad committed
67
68
69

        # If the learning rate is constant, just return the initial value.
        if self.decay_style == 'constant':
70
            return self.max_lr
mohammad's avatar
mohammad committed
71

72
73
        # For any steps larger than `self.decay_steps`, use `self.min_lr`.
        if self.num_steps > self.decay_steps:
mohammad's avatar
mohammad committed
74
75
76
            return self.min_lr
        
        # If we are done with the warmup period, use the decay style.
77
78
79
        num_steps_ = self.num_steps - self.warmup_steps
        decay_steps_ = self.decay_steps - self.warmup_steps
        decay_ratio = float(num_steps_) / float(decay_steps_)
mohammad's avatar
mohammad committed
80
81
        assert decay_ratio >= 0.0
        assert decay_ratio <= 1.0
82
        delta_lr = self.max_lr - self.min_lr
Mohammad's avatar
Mohammad committed
83
84

        if self.decay_style == 'linear':
mohammad's avatar
mohammad committed
85
            coeff = (1.0 - decay_ratio)
Mohammad's avatar
Mohammad committed
86
        elif self.decay_style == 'cosine':
mohammad's avatar
mohammad committed
87
            coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
Raul Puri's avatar
Raul Puri committed
88
        else:
mohammad's avatar
mohammad committed
89
90
91
92
93
            raise Exception('{} decay style is not supported.'.format(
                self.decay_style))
       
        return self.min_lr + coeff * delta_lr

Mohammad's avatar
Mohammad committed
94

95
    def step(self, increment=1, step_num=None):
Mohammad's avatar
Mohammad committed
96
        """Set lr for all parameters groups."""
Raul Puri's avatar
Raul Puri committed
97
        if step_num is None:
98
99
            step_num = self.num_steps + increment
        self.num_steps = step_num
Raul Puri's avatar
Raul Puri committed
100
101
102
103
        new_lr = self.get_lr()
        for group in self.optimizer.param_groups:
            group['lr'] = new_lr

mohammad's avatar
mohammad committed
104

Raul Puri's avatar
Raul Puri committed
105
    def state_dict(self):
Mohammad's avatar
Mohammad committed
106
        state_dict = {
107
108
109
            'max_lr': self.max_lr,
            'warmup_steps': self.warmup_steps,
            'num_steps': self.num_steps,
Mohammad's avatar
Mohammad committed
110
            'decay_style': self.decay_style,
111
            'decay_steps': self.decay_steps,
Mohammad's avatar
Mohammad committed
112
            'min_lr': self.min_lr
Raul Puri's avatar
Raul Puri committed
113
        }
Mohammad's avatar
Mohammad committed
114
        return state_dict
Raul Puri's avatar
Raul Puri committed
115

mohammad's avatar
mohammad committed
116

Mohammad's avatar
Mohammad committed
117
118
119
    def _check_and_set(self, cls_value, sd_value, name):
        """Auxiliary function for checking the values in the checkpoint and
        setting them."""
120
121
122
        if self.override_lr_scheduler:
            print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
            return cls_value
Mohammad's avatar
Mohammad committed
123
124
125
126
127
128
129
130

        if not self.use_checkpoint_lr_scheduler:
            assert cls_value == sd_value, 'AnnealingLR: class input value' \
                'and checkpoint values for {} do not match'.format(name)
        print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
                                                                  name))
        return sd_value

mohammad's avatar
mohammad committed
131

Raul Puri's avatar
Raul Puri committed
132
    def load_state_dict(self, sd):
133

134
135
136
137
138
139
140
        if 'start_lr' in sd:
            max_lr_ = sd['start_lr']
        else:
            max_lr_ = sd['max_lr']
        self.max_lr = self._check_and_set(self.max_lr, max_lr_,
                                          'learning rate')
        
Mohammad's avatar
Mohammad committed
141
        self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
142
                                          'minimum learning rate')
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        if 'warmup_iter' in sd:
            warmup_steps_ = sd['warmup_iter']
        else:
            warmup_steps_ = sd['warmup_steps']
        self.warmup_steps = self._check_and_set(self.warmup_steps,
                                                warmup_steps_,
                                                'warmup iterations')

        if 'end_iter' in sd:
            decay_steps_ = sd['end_iter']
        else:
            decay_steps_ = sd['decay_steps']
        self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_,
                                               'total number of iterations')
Mohammad's avatar
Mohammad committed
158
        self.decay_style = self._check_and_set(self.decay_style,
159
160
161
                                               sd['decay_style'],
                                               'decay style')

162
163
164
165
166
        if 'num_iters' in sd:
            self.num_steps = sd['num_iters']
        else:
            self.num_steps = sd['num_steps']
        self.step(step_num=self.num_steps)