"official/vision/beta/modeling/layers/deeplab.py" did not exist on "a053b55528304e38129d6a0b341b5c272212e4d8"
global_vars.py 9.62 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron global variables."""

mohammad's avatar
mohammad committed
18
19
from abc import ABC
from abc import abstractmethod
Mohammad's avatar
Mohammad committed
20
21
import os
import sys
Mohammad's avatar
Mohammad committed
22
23
24
import time

import torch
Mohammad's avatar
Mohammad committed
25

26
from megatron.tokenizer import build_tokenizer
Mohammad's avatar
Mohammad committed
27
28
29
from .arguments import parse_args

_GLOBAL_ARGS = None
mohammad's avatar
mohammad committed
30
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
Mohammad's avatar
Mohammad committed
31
32
33
34
35
36
_GLOBAL_TOKENIZER = None
_GLOBAL_TENSORBOARD_WRITER = None
_GLOBAL_ADLR_AUTORESUME = None
_GLOBAL_TIMERS = None


mohammad's avatar
mohammad committed
37

Mohammad's avatar
Mohammad committed
38
39
40
41
42
43
def get_args():
    """Return arguments."""
    _ensure_var_is_initialized(_GLOBAL_ARGS, 'args')
    return _GLOBAL_ARGS


mohammad's avatar
mohammad committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def get_num_microbatches_calculator():
    """Return num-microbatches calculator."""
    _ensure_var_is_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR,
                               'number of micro-batches calculator.')
    return _GLOBAL_NUM_MICROBATCHES_CALCULATOR


def get_num_microbatches():
    return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()


def update_num_microbatches(consumed_samples):
    _GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples)


Mohammad's avatar
Mohammad committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def get_tokenizer():
    """Return tokenizer."""
    _ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
    return _GLOBAL_TOKENIZER


def get_tensorboard_writer():
    """Return tensorboard writer. It can be None so no need
    to check if it is initialized."""
    return _GLOBAL_TENSORBOARD_WRITER


def get_adlr_autoresume():
    """ADLR autoresume object. It can be None so no need
    to check if it is initialized."""
    return _GLOBAL_ADLR_AUTORESUME


def get_timers():
    """Return timers."""
    _ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
    return _GLOBAL_TIMERS


83
84
def set_global_variables(extra_args_provider=None, args_defaults={},
                         ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
85
    """Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
Mohammad's avatar
Mohammad committed
86
    args = _parse_args(extra_args_provider=extra_args_provider,
87
88
                       defaults=args_defaults,
                       ignore_unknown_args=ignore_unknown_args)
mohammad's avatar
mohammad committed
89
    _build_num_microbatches_calculator(args)
Mohammad's avatar
Mohammad committed
90
    _ = _build_tokenizer(args)
Mohammad's avatar
Mohammad committed
91
92
    _set_tensorboard_writer(args)
    _set_adlr_autoresume(args)
Mohammad's avatar
Mohammad committed
93
94
95
    _set_timers()


96
97
def _parse_args(extra_args_provider=None, defaults={},
                ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
98
99
100
    """Parse entire arguments."""
    global _GLOBAL_ARGS
    _ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args')
Mohammad's avatar
Mohammad committed
101
    _GLOBAL_ARGS = parse_args(extra_args_provider=extra_args_provider,
102
103
                              defaults=defaults,
                              ignore_unknown_args=ignore_unknown_args)
Mohammad's avatar
Mohammad committed
104
    return _GLOBAL_ARGS
Mohammad's avatar
Mohammad committed
105
106


mohammad's avatar
mohammad committed
107
108
109
110
111
112
113
114
115
def _build_num_microbatches_calculator(args):

    global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
    _ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR,
                                   'num microbatches calculator')

    # Constant num micro-batches.
    if args.rampup_batch_size is None:
        micro_batch_times_data_parallel = args.micro_batch_size * \
116
                                          args.data_parallel_size
mohammad's avatar
mohammad committed
117
118
119
120
121
122
123
124
125
126
127
128
        assert args.global_batch_size % micro_batch_times_data_parallel == 0, \
            'global batch size ({}) is not divisible by micro batch size ({})' \
            ' times data parallel size ({})'.format(args.global_batch_size,
                                                    args.micro_batch_size,
                                                    args.data_parallel_size)
        num_micro_batches = args.global_batch_size // \
                            micro_batch_times_data_parallel
        if args.rank == 0:
            print('setting number of micro-batches to constant {}'.format(
                num_micro_batches), flush=True)
        _GLOBAL_NUM_MICROBATCHES_CALCULATOR = ConstantNumMicroBatches(
            num_micro_batches)
129
        return
mohammad's avatar
mohammad committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    raise Exception('should not be here.')


class NumMicroBatchesCalculator(ABC):

    def __init__(self, name):
        self.name = name
        super(NumMicroBatchesCalculator, self).__init__()

    @abstractmethod
    def get(self):
        pass

    def update(self, consumed_samples):
        pass


class ConstantNumMicroBatches(NumMicroBatchesCalculator):

    def __init__(self, num_micro_batches=1):
        assert num_micro_batches >= 1
        self.num_micro_batches = num_micro_batches
        super(ConstantNumMicroBatches, self).__init__(
            'constant: {}'.format(self.num_micro_batches))

    def update(self, consumed_samples):
        pass

    def get(self):
        return self.num_micro_batches



Mohammad's avatar
Mohammad committed
164
def _build_tokenizer(args):
Mohammad's avatar
Mohammad committed
165
166
167
    """Initialize tokenizer."""
    global _GLOBAL_TOKENIZER
    _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
Mohammad's avatar
Mohammad committed
168
    _GLOBAL_TOKENIZER = build_tokenizer(args)
Mohammad's avatar
Mohammad committed
169
170
171
172
173
174
175
    return _GLOBAL_TOKENIZER


def rebuild_tokenizer(args):
    global _GLOBAL_TOKENIZER
    _GLOBAL_TOKENIZER = None
    return _build_tokenizer(args)
Mohammad's avatar
Mohammad committed
176
177


Mohammad's avatar
Mohammad committed
178
def _set_tensorboard_writer(args):
Mohammad's avatar
Mohammad committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    """Set tensorboard writer."""
    global _GLOBAL_TENSORBOARD_WRITER
    _ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER,
                                   'tensorboard writer')

    if hasattr(args, 'tensorboard_dir') and \
       args.tensorboard_dir and args.rank == 0:
        try:
            from torch.utils.tensorboard import SummaryWriter
            print('> setting tensorboard ...')
            _GLOBAL_TENSORBOARD_WRITER = SummaryWriter(
                log_dir=args.tensorboard_dir)
        except ModuleNotFoundError:
            print('WARNING: TensorBoard writing requested but is not '
                  'available (are you using PyTorch 1.1.0 or later?), '
                  'no TensorBoard logs will be written.', flush=True)


Mohammad's avatar
Mohammad committed
197
def _set_adlr_autoresume(args):
Mohammad's avatar
Mohammad committed
198
199
200
201
202
203
204
205
206
207
    """Initialize ADLR autoresume."""
    global _GLOBAL_ADLR_AUTORESUME
    _ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume')

    if args.adlr_autoresume:
        if args.rank == 0:
            print('enabling autoresume ...', flush=True)
        sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
        try:
            from userlib.auto_resume import AutoResume
Neel Kant's avatar
Neel Kant committed
208
        except BaseException:
Mohammad's avatar
Mohammad committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            print('ADLR autoresume is not available, exiting ...')
            sys.exit()

        _GLOBAL_ADLR_AUTORESUME = AutoResume


def _set_timers():
    """Initialize timers."""
    global _GLOBAL_TIMERS
    _ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
    _GLOBAL_TIMERS = Timers()


def _ensure_var_is_initialized(var, name):
    """Make sure the input variable is not None."""
    assert var is not None, '{} is not initialized.'.format(name)


def _ensure_var_is_not_initialized(var, name):
    """Make sure the input variable is not None."""
    assert var is None, '{} is already initialized.'.format(name)
Mohammad's avatar
Mohammad committed
230
231


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class _Timer:
    """Timer."""

    def __init__(self, name):
        self.name_ = name
        self.elapsed_ = 0.0
        self.started_ = False
        self.start_time = time.time()

    def start(self):
        """Start the timer."""
        assert not self.started_, 'timer has already been started'
        torch.cuda.synchronize()
        self.start_time = time.time()
        self.started_ = True

    def stop(self):
        """Stop the timer."""
        assert self.started_, 'timer is not started'
        torch.cuda.synchronize()
        self.elapsed_ += (time.time() - self.start_time)
        self.started_ = False

    def reset(self):
        """Reset timer."""
        self.elapsed_ = 0.0
        self.started_ = False

    def elapsed(self, reset=True):
        """Calculate the elapsed time."""
        started_ = self.started_
        # If the timing in progress, end it first.
        if self.started_:
            self.stop()
        # Get the elapsed time.
        elapsed_ = self.elapsed_
        # Reset the elapsed time
        if reset:
            self.reset()
        # If timing was in progress, set it back.
        if started_:
            self.start()
        return elapsed_


Mohammad's avatar
Mohammad committed
277
278
279
280
281
282
283
284
class Timers:
    """Group of timers."""

    def __init__(self):
        self.timers = {}

    def __call__(self, name):
        if name not in self.timers:
285
            self.timers[name] = _Timer(name)
Mohammad's avatar
Mohammad committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        return self.timers[name]

    def write(self, names, writer, iteration, normalizer=1.0, reset=False):
        """Write timers to a tensorboard writer"""
        # currently when using add_scalars,
        # torch.utils.add_scalars makes each timer its own run, which
        # polutes the runs list, so we just add each as a scalar
        assert normalizer > 0.0
        for name in names:
            value = self.timers[name].elapsed(reset=reset) / normalizer
            writer.add_scalar(name + '_time', value, iteration)

    def log(self, names, normalizer=1.0, reset=True):
        """Log a group of timers."""
        assert normalizer > 0.0
        string = 'time (ms)'
        for name in names:
            elapsed_time = self.timers[name].elapsed(
304
                reset=reset) * 1000.0 / normalizer
Mohammad's avatar
Mohammad committed
305
306
307
308
309
310
            string += ' | {}: {:.2f}'.format(name, elapsed_time)
        if torch.distributed.is_initialized():
            if torch.distributed.get_rank() == 0:
                print(string, flush=True)
        else:
            print(string, flush=True)