parallel_state.py 20.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4
5

"""Model and data parallel groups."""

import torch
6
from typing import Optional
7

8
9
from .utils import GlobalMemoryBuffer

10
# Intra-layer model parallel group that the current rank belongs to.
11
_TENSOR_MODEL_PARALLEL_GROUP = None
12
# Inter-layer model parallel group that the current rank belongs to.
13
14
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
15
_MODEL_PARALLEL_GROUP = None
16
17
# Embedding group.
_EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
18
# Position embedding group.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
19
_POSITION_EMBEDDING_GROUP = None
20
21
22
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

23
24
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
25
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None
26

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
# These values enable us to change the mpu sizes on the fly.
28
29
30
31
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
32

33
34
35
# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

Vijay Korthikanti's avatar
Vijay Korthikanti committed
36
37
38
# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

39
# A list of global ranks for each pipeline group to ease calculation of the source
40
# rank when broadcasting from the first or last pipeline stage.
41
_PIPELINE_GLOBAL_RANKS = None
42

43
44
45
46
# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None

47
48
# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None
49

50

51
52
53
54
55
56
def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    virtual_pipeline_model_parallel_size: Optional[int] = None,
    pipeline_model_parallel_split_rank: Optional[int] = None,
) -> None:
57
58
59
60
    """
    Initialize model data parallel groups.

    Arguments:
61
62
63
64
65
66
67
        tensor_model_parallel_size: number of GPUs used for tensor model parallelism.
        pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism.
        virtual_pipeline_model_parallel_size: number of virtual stages (interleaved
                                              pipeline).
        pipeline_model_parallel_split_rank: for models with both encoder and decoder,
                                            rank in pipeline with split point.

68
    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
69
70
71
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
72
73
74
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
75
        8 tensor model-parallel groups:
76
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
77
        4 pipeline model-parallel groups:
78
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
79
80
81
82
83
84
85
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
86
87
88
89
    world_size: int = torch.distributed.get_world_size()

    if world_size % (tensor_model_parallel_size * pipeline_model_parallel_size) != 0:
        raise RuntimeError(
90
91
            f"world_size ({world_size}) is not divisible by tensor_model_parallel_size "
            f"({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size})"
92
93
94
95
96
97
98
99
100
101
        )

    data_parallel_size: int = world_size // (tensor_model_parallel_size *
                                             pipeline_model_parallel_size)

    num_tensor_model_parallel_groups: int  = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
    num_data_parallel_groups: int = world_size // data_parallel_size

    if virtual_pipeline_model_parallel_size is not None:
102
103
104
        if not pipeline_model_parallel_size_ > 2:
            raise RuntimeError("pipeline-model-parallel size should be greater than 2 with "
                               "interleaved schedule")
105
106
107
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
108
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size
109

110
    if pipeline_model_parallel_split_rank is not None:
111
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
112
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank
113

114
115
    rank = torch.distributed.get_rank()

116
    # Build the data-parallel groups.
117
    global _DATA_PARALLEL_GROUP
118
    global _DATA_PARALLEL_GLOBAL_RANKS
119
    assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'
120
    all_data_parallel_group_ranks = []
121
122
123
124
    for i in range(pipeline_model_parallel_size):
        start_rank = i * num_pipeline_model_parallel_groups
        end_rank = (i + 1) * num_pipeline_model_parallel_groups
        for j in range(tensor_model_parallel_size):
125
            ranks = range(start_rank + j, end_rank, tensor_model_parallel_size)
126
127
128
129
            all_data_parallel_group_ranks.append(list(ranks))
            group = torch.distributed.new_group(ranks)
            if rank in ranks:
                _DATA_PARALLEL_GROUP = group
130
                _DATA_PARALLEL_GLOBAL_RANKS = ranks
131
132

    # Build the model-parallel groups.
133
    global _MODEL_PARALLEL_GROUP
134
    assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
135
136
137
    for i in range(data_parallel_size):
        ranks = [data_parallel_group_ranks[i]
                 for data_parallel_group_ranks in all_data_parallel_group_ranks]
138
        group = torch.distributed.new_group(ranks)
139
        if rank in ranks:
140
141
            _MODEL_PARALLEL_GROUP = group

142
143
144
145
146
147
148
    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    assert _TENSOR_MODEL_PARALLEL_GROUP is None, \
        'tensor model parallel group is already initialized'
    for i in range(num_tensor_model_parallel_groups):
        ranks = range(i * tensor_model_parallel_size,
                      (i + 1) * tensor_model_parallel_size)
149
150
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
151
            _TENSOR_MODEL_PARALLEL_GROUP = group
152

153
154
155
    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
156
    global _PIPELINE_GLOBAL_RANKS
157
158
    assert _PIPELINE_MODEL_PARALLEL_GROUP is None, \
        'pipeline model parallel group is already initialized'
159
    global _EMBEDDING_GROUP
160
    global _EMBEDDING_GLOBAL_RANKS
161
    assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
162
163
164
165
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, \
        'position embedding group is already initialized'
166
    for i in range(num_pipeline_model_parallel_groups):
167
        ranks = range(i, world_size, num_pipeline_model_parallel_groups)
168
169
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
170
            _PIPELINE_MODEL_PARALLEL_GROUP = group
171
            _PIPELINE_GLOBAL_RANKS = ranks
172
173
174
175
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
            position_embedding_ranks = [ranks[0]]
Jared Casper's avatar
Jared Casper committed
177
178
            if pipeline_model_parallel_split_rank is not None:
                if ranks[pipeline_model_parallel_split_rank] not in embedding_ranks:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
179
                    embedding_ranks = [ranks[0],
Jared Casper's avatar
Jared Casper committed
180
                                       ranks[pipeline_model_parallel_split_rank],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
181
                                       ranks[-1]]
Jared Casper's avatar
Jared Casper committed
182
                if ranks[pipeline_model_parallel_split_rank] not in position_embedding_ranks:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
183
                    position_embedding_ranks = [ranks[0],
Jared Casper's avatar
Jared Casper committed
184
                                       ranks[pipeline_model_parallel_split_rank]]
185
186
        else:
            embedding_ranks = ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
187
188
            position_embedding_ranks = ranks

189
190
191
        group = torch.distributed.new_group(embedding_ranks)
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
192
193
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks
194

Vijay Korthikanti's avatar
Vijay Korthikanti committed
195
196
197
198
        group = torch.distributed.new_group(position_embedding_ranks)
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
199
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
200

201
202
203
204
205
206
    # Initialize global memory buffer
    # This isn't really "parallel state" but there isn't another good place to
    # put this. If we end up with a more generic initialization of megatron-core
    # we could stick it there
    _set_global_memory_buffer()

207
208
209

def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
210
211
    if _TENSOR_MODEL_PARALLEL_GROUP is None or \
        _PIPELINE_MODEL_PARALLEL_GROUP is None or \
212
        _DATA_PARALLEL_GROUP is None:
213
214
215
216
217
218
219
220
221
222
223
        return False
    return True


def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, \
        'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


224
225
226
def get_tensor_model_parallel_group():
    """Get the tensor model parallel group the caller rank belongs to."""
    assert _TENSOR_MODEL_PARALLEL_GROUP is not None, \
227
        'intra_layer_model parallel group is not initialized'
228
    return _TENSOR_MODEL_PARALLEL_GROUP
229
230


231
232
233
234
235
def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
    assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, \
        'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP
236
237


238
239
240
241
242
243
244
def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


245
246
247
248
249
250
251
def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, \
        'embedding group is not initialized'
    return _EMBEDDING_GROUP


Vijay Korthikanti's avatar
Vijay Korthikanti committed
252
253
254
255
256
257
258
def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, \
        'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


259
260
261
262
def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size
263
264


265
266
267
268
def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
269
270


271
272
273
274
275
276
def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
277
278


279
280
281
282
283
284
def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286


287
288
289
290
def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank
291
292


293
294
295
296
def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank
297
298


299
300
301
302
303
304
def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
305
306


307
308
309
310
311
312
def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())
313
314


315

316
def is_pipeline_first_stage(ignore_virtual=False):
317
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
318
    if not ignore_virtual:
319
320
        if get_virtual_pipeline_model_parallel_world_size() is not None and \
            get_virtual_pipeline_model_parallel_rank() != 0:
321
            return False
322
    return get_pipeline_model_parallel_rank() == 0
323
324


325
def is_pipeline_last_stage(ignore_virtual=False):
326
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
327
    if not ignore_virtual:
328
329
330
331
332
        virtual_pipeline_model_parallel_world_size = \
            get_virtual_pipeline_model_parallel_world_size()
        if virtual_pipeline_model_parallel_world_size is not None and \
            get_virtual_pipeline_model_parallel_rank() != (
                virtual_pipeline_model_parallel_world_size - 1):
333
            return False
334
335
    return get_pipeline_model_parallel_rank() == (
        get_pipeline_model_parallel_world_size() - 1)
336
337


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


Vijay Korthikanti's avatar
Vijay Korthikanti committed
354
355
356
357
358
359
360
def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and \
            is_pipeline_stage_after_split(rank+1)


400
401
402
403
404
405
406
407
408
409
410
411
def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


412
413
414
415
416
417
def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


418
def get_tensor_model_parallel_src_rank():
419
    """Calculate the global rank corresponding to the first local rank
420
    in the tensor model parallel group."""
421
    global_rank = torch.distributed.get_rank()
422
    local_world_size = get_tensor_model_parallel_world_size()
423
424
    return (global_rank // local_world_size) * local_world_size

425

426
427
def get_data_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
428
429
430
431
    in the data parallel group."""
    assert _DATA_PARALLEL_GLOBAL_RANKS is not None, \
        "Data parallel group is not initialized"
    return _DATA_PARALLEL_GLOBAL_RANKS[0]
432
433


434
def get_pipeline_model_parallel_first_rank():
435
436
    """Return the global rank of the first process in the pipeline for the
    current tensor parallel group"""
437
438
439
440
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    return _PIPELINE_GLOBAL_RANKS[0]

441

442
def get_pipeline_model_parallel_last_rank():
443
444
    """Return the global rank of the last process in the pipeline for the
    current tensor parallel group"""
445
446
447
448
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]
449

450
def get_pipeline_model_parallel_next_rank():
451
    """Return the global rank that follows the caller in the pipeline"""
452
453
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
454
455
456
457
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]

458

459
def get_pipeline_model_parallel_prev_rank():
460
    """Return the global rank that preceeds the caller in the pipeline"""
461
462
463
464
465
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
466

467

468
469
470
471
472
473
474
475
476
def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())

477
478
479
480
481
482
483
def _set_global_memory_buffer():
    """Initialize global buffer"""
    global _GLOBAL_MEMORY_BUFFER
    assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
    _GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()

def get_global_memory_buffer():
484
    """Return the global GlobalMemoryBuffer object"""
485
486
487
488
    assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
    return _GLOBAL_MEMORY_BUFFER


489
490
def destroy_model_parallel():
    """Set the groups to none."""
491
492
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
493
494
495
496
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
497
498
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
499
500
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
501
502
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None
503
504
505
506
507
508
509
510
511
512
513
514
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None
515
516
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None