tokenizer.py 8.46 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Megatron tokenizers."""
4
5
6
7
8

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
9
from .gpt2_tokenization import GPT2Tokenizer
10
11


Mohammad's avatar
Mohammad committed
12
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
13
14
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
15
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
16
              flush=True)
17
18

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
19
    assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
20
21
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
22
23
                                            lower_case=True,
                                            vocab_extra_ids=args.vocab_extra_ids)
Raul Puri's avatar
Raul Puri committed
24
25
    elif args.tokenizer_type == 'BertWordPieceCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
26
27
                                            lower_case=False,
                                            vocab_extra_ids=args.vocab_extra_ids)
Mohammad's avatar
Mohammad committed
28
29
30
    elif args.tokenizer_type == 'GPT2BPETokenizer':
        assert args.merge_file is not None
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
31
32
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
33
                                  'implemented.'.format(args.tokenizer_type))
34
35

    # Add vocab size.
Mohammad's avatar
Mohammad committed
36
37
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
38
39
40
41

    return tokenizer


Mohammad's avatar
Mohammad committed
42
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
43
44
45
46
47
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
48
        args.tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
49
50
51
52
53
54
55
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
56
57
58
59
60
61
62
63
64
65
66
67
68
69


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

70
71
72
73
74
75
76
77
78
79
80
81
    @property
    @abstractmethod
    def vocab(self):
        """Dictionary from vocab text token to id token."""
        pass

    @property
    @abstractmethod
    def inv_vocab(self):
        """Dictionary from vocab id token to text token."""
        pass

82
83
84
85
    @abstractmethod
    def tokenize(self, text):
        pass

86
87
88
89
    def detokenize(self, token_ids):
        raise NotImplementedError('detokenizer is not implemented for {} '
                                  'tokenizer'.format(self.name))

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))

110
111
112
113
114
    @property
    def mask(self):
        raise NotImplementedError('MASK is not provided for {} '
                                  'tokenizer'.format(self.name))

115
116
117
118

class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

119
    def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
120
121
122
123
124
125
126
127
128
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
Neel Kant's avatar
Neel Kant committed
129
        self.mask_id = self.tokenizer.vocab['[MASK]']
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        self._additional_special_tokens = []

        # (dsachan) Add BOS and EOS tokens
        SPECIAL_TOKENS = {'eos_token': '[EOS]',
                          'bos_token': '[BOS]'}
        self._bos_token = '[BOS]'
        self.add_token(self._bos_token)
        self._bos_token_id = self.vocab.get(self._bos_token)

        self._eos_token = '[EOS]'
        self.add_token(self._eos_token)
        self._eos_token_id = self.vocab.get(self._eos_token)

        # (dsachan) Add additional special tokens
        # These can be used as sentinel tokens in T5 model inputs
        additional_special_tokens = []
        additional_special_tokens.extend(
            ["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
        self.add_additional_special_tokens(additional_special_tokens)

    def add_token(self, token):
        if token not in self.vocab:
            self.inv_vocab[self.vocab_size] = token
            # self.vocab_size comes from len(vocab)
            # and it will increase as we add elements
            self.vocab[token] = self.vocab_size

    def add_additional_special_tokens(self, tokens_list):
        setattr(self, "additional_special_tokens", tokens_list)
        for value in tokens_list:
            self.add_token(value)
161
162
163
164
165

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

166
167
168
169
170
171
172
173
    @property
    def vocab(self):
        return self.tokenizer.vocab

    @property
    def inv_vocab(self):
        return self.tokenizer.inv_vocab

174
175
176
177
    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

178
179
180
181
    def decode(self, ids):
        tokens = self.tokenizer.convert_ids_to_tokens(ids)
        return self.tokenizer.convert_tokens_to_string(tokens)

182
183
184
185
    def decode_token_ids(self, token_ids):
        tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
186
187
188
189
190
191
192
193
194

        result = ""
        for s in non_pads:
            if s.startswith("##"):
                result += s[2:]
            else:
                result += " " + s

        return result
195

196
197
198
199
200
201
202
203
204
205
206
    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
207

208
209
210
    @property
    def mask(self):
        return self.mask_id
Mohammad's avatar
Mohammad committed
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    @property
    def bos_token(self):
        """ Beginning of sentence token id """
        return self._bos_token

    @property
    def eos_token(self):
        """ End of sentence token id """
        return self._eos_token

    @property
    def additional_special_tokens(self):
        """ All the additional special tokens you may want to use (list of strings)."""
        return self._additional_special_tokens

    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary."""
        return self._bos_token_id

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary."""
        return self._eos_token_id

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers)."""
        return [self.vocab.get(token) for token in self._additional_special_tokens]

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

Neel Kant's avatar
Neel Kant committed
246

Mohammad's avatar
Mohammad committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

    def __init__(self, vocab_file, merge_file):
        name = 'GPT2 BPE'
        super().__init__(name)

        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
                                       special_tokens=[], max_len=None)
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

262
263
264
265
266
267
268
269
    @property
    def vocab(self):
        return self.tokenizer.encoder

    @property
    def inv_vocab(self):
        return self.tokenizer.decoder

Mohammad's avatar
Mohammad committed
270
271
272
    def tokenize(self, text):
        return self.tokenizer.encode(text)

273
274
275
    def detokenize(self, token_ids):
        return self.tokenizer.decode(token_ids)

Mohammad's avatar
Mohammad committed
276
277
278
    @property
    def eod(self):
        return self.eod_id