README.md 25.4 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
[Megatron](https://arxiv.org/pdf/1909.08053.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel, and multinode training of [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [BERT](https://arxiv.org/pdf/1810.04805.pdf) using mixed precision.

3
Our codebase is capable of efficiently training a 72-layer, 8.3 billion parameter GPT-2 language model with 8-way model and 64-way data parallelism across 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak theoritical FLOPs. Using our GPT-2 model we achieve SOTA results on the WikiText-103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. 
Mohammad's avatar
Mohammad committed
4

5
For BERT training, we swapped the position of the layer normalization and the residual connection in the model architecture (similar to GPT-2 architucture), which allowed the models to continue to improve as they were scaled up. Our BERT models with 3.9 billion parameters reaches a loss of 1.16, SQuAD 2.0 F1-score of 91.7, and RACE accuracy of 90.9%.
Mohammad's avatar
Mohammad committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

<a id="contents"></a>
# Contents
<!-- MarkdownTOC -->

- [Setup](#setup)
  - [Downloading Checkpoints](#downloading-checkpoints)
- [Usage](#usage)
- [Training](#training)
  - [Data Preprocessing](#data-preprocessing)
  - [BERT Pretraining](#bert-pretraining)
  - [GPT-2 Pretraining](#gpt-2-pretraining)
  - [Distributed BERT or GPT-2 Pretraining](#distributed-bert-or-gpt-2-pretraining)
- [Evaluation and Tasks](#evaluation-and-tasks)
  - [GPT-2 Text Generation](#gpt-2-text-generation)
  - [GPT-2 Evaluation](#gpt-2-evaluation)
    - [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
    - [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
  - [BERT Task Evaluation](#bert-task-evaluation)
    - [RACE Evaluation](#race-evaluation)
    - [MNLI Evaluation](#mnli-evaluation)
- [Datasets](#datasets)
  - [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
  - [Collecting GPT-2 Webtext Data](#collecting-gpt-2-webtext-data)

<!-- /MarkdownTOC -->

<a id="setup"></a>
# Setup
Mohammad's avatar
Mohammad committed
35
We officially support only python 3.6, pytorch 1.5, cuda 10, and nccl 2.6 versions and above.
36

Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
37
38
To use this repo please install the latest supported versions of PyTorch with GPU support and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start). We strongly recommend using one of [NGC's recent PyTorch containers](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) (the latest compatible version at time of publication can be pulled with `docker pull nvcr.io/nvidia/pytorch:20.03-py3`). Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation or downstream tasks.

Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
39
To use megatron you can either clone the repo or install it via pip (make sure python3-dev is installed):
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
40
<pre>
Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
41
pip install megatron-lm
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
42
</pre>
Raul Puri's avatar
Raul Puri committed
43

Mohammad's avatar
Mohammad committed
44
45
<a id="downloading-checkpoints"></a>
## Downloading Checkpoints
Mohammad's avatar
latest  
Mohammad committed
46
We've provided two pretrained checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first please [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI.
Raul Puri's avatar
Raul Puri committed
47

Mohammad's avatar
Mohammad committed
48
49
50
51
The checkpoints can be downloaded with:
<pre>
ngc registry model download-version --dest &#60;output_base_directory&#62; nvidia/&#60;model_name&#62;:&#60;version&#62;
</pre>
Raul Puri's avatar
Raul Puri committed
52

Mohammad's avatar
Mohammad committed
53
54
55
The available models along with `<model_name>:<version>` are below:
* [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m): megatron\_bert\_345m:v0.0
* [GPT-2-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m): megatron\_lm\_345m:v0.0 
Raul Puri's avatar
Raul Puri committed
56

Raul Puri's avatar
Raul Puri committed
57
The models require vocabulary files to run. The BERT uncased WordPiece vocab file can be extracted from Google's [pretrained BERT models](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt). The GPT-2 [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
Raul Puri's avatar
Raul Puri committed
58

Mohammad's avatar
Mohammad committed
59
Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1)
Raul Puri's avatar
Raul Puri committed
60

Mohammad's avatar
Mohammad committed
61
<a id="usage"></a>
Raul Puri's avatar
Raul Puri committed
62
63
# Usage

Mohammad's avatar
Mohammad committed
64
65
66
67
68
69
70
71
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

Mohammad's avatar
Mohammad committed
72
We've provided several scripts for pretraining both BERT and GPT-2 in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT-2 interactive text generation.
Mohammad's avatar
Mohammad committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

<a id="training"></a>
# Training
<a id="data-preprocessing"></a>
## Data Preprocessing
We support three file formats for training, but all require preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

Some minor modifications are required for GPT-2 data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
110

Mohammad's avatar
Mohammad committed
111
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT-2 training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
112

Mohammad's avatar
Mohammad committed
113
114
115
116
117
118
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

<a id="bert-pretraining"></a>
## BERT Pretraining
`bash examples/pretrain_bert.sh`

Mohammad's avatar
Mohammad committed
119
This script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--warmup`. While this is single GPU training, the batch size specified by `--batch-size` is per GPU used for data parallelism. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`).
Mohammad's avatar
Mohammad committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence

BERT_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 512 \
           --max-position-embeddings 512 \
           --lr 0.0001 \
           --train-iters 2000000 \
           --min-lr 0.00001 \
           --lr-decay-iters 990000 \
           --warmup 0.01 \
           --batch-size 8 \
           --vocab-file $VOCAB_FILE \
           --split 949,50,1 \
           --fp16"

OUTPUT_ARGS="--log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
             --checkpoint-activations"
Raul Puri's avatar
Raul Puri committed
148
149

python pretrain_bert.py \
Mohammad's avatar
Mohammad committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
       $BERT_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

<a id="gpt-2-pretraining"></a>
## GPT-2 Pretraining
`bash examples/pretrain_gpt2.sh`

This script runs single GPU 345M parameter GPT-2 pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training. 

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

GPT2_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 1024 \
           --max-position-embeddings 1024 \
           --batch-size 4 \
           --lr 0.00015 \
           --train-iters 500000 \
           --lr-decay-iters 320000 \
           --lr-decay-style cosine \
           --vocab-file $VOCAB_FILE \
           --merge-file $MERGE_FILE \
           --warmup .01 \
           --fp16"

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

190
python pretrain_gpt2.py \
Mohammad's avatar
Mohammad committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
       $GPT2_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH \
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

<a id="distributed-bert-or-gpt-2-pretraining"></a>
## Distributed BERT or GPT-2 Pretraining
`bash examples/pretrain_bert_distributed.sh`

`bash examples/pretrain_gpt2_distributed.sh`

These scripts use the PyTorch distributed launcher for distributed training. As such, multinode training can be achieved by properly setting environment variables and using `init_method='env://'` in the launcher. See the official PyTorch [documentation](https://pytorch.org/docs/stable/distributed.html#launch-utility) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multinode training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag `-m torch.distributed.launch`, detailed below, are the only additional requirements to adopt distributed training.

The two tiers of parallelism are data and model parallelism. First, we facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model parallel sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.

Second, we developed a simple and efficient intra-layer model parallel approach. To use model parallelism, add the `--model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. With `WORLD_SIZE` GPUs and `MP_SIZE` model parallel size, `WORLD_SIZE`/`MP_SIZE` GPUs will be used for data parallelism. The default value for `--model-parallel-size` is 1, which will not implement model parallelism.

Other than these minor changes, the distributed training is identical to the training on a single GPU.

Distributed BERT training:
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence
BERT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_bert.py \
                $BERT_ARGS \
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
                --model-parallel-size $MP_SIZE \
                --DDP-impl torch
</pre>

Distributed GPT-2 training:
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS=&#60;same as those directly above&#62;

CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document
GPT2_ARGS=&#60;same as those in <a href="#gpt-2-pretraining">GPT-2 pretraining</a> above&#62;
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_gpt2.py \
                $GPT2_ARGS \
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
                --model-parallel-size $MP_SIZE \
                --DDP-impl torch

</pre>

<a id="evaluation-and-tasks"></a>
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this.

<pre>
MODEL_PARALLEL_SIZE=2

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

WORLD_SIZE=$MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
        --model-type BERT \
        --model-parallel-size $MODEL_PARALLEL_SIZE \
        --tokenizer-type BertWordPieceLowerCase \
        --vocab-file $VOCAB_FILE \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 512 \
        --max-position-embeddings 512 \
        --load $CHECKPOINT_PATH

</pre>

293
Several downstream tasks are described for both GPT-2 and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

<a id="gpt-2-text-generation"></a>
## GPT-2 Text Generation
`bash examples/generate_text.sh`

We generate text samples using largely the GPT-2 pretraining script. Few changes need to make, such as we need to provide the path to the pretrained checkpoint, the length of the output samples, whether to generate texts unconditionally (`--num-samples` to denote how many samples to generate) or conditional (need to pass `--sample-input-file <filename>` where each line of the file will be used as the conditional texts). There are few optional parameters to play, e.g. `top-k`, `top-p`, or `greedy` (set top-k and top-p to 0) sampling..

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
GPT2_ARGS=&#60;same as those in <a href="#gpt-2-pretraining">GPT-2 pretraining</a> above&#62;

MAX_OUTPUT_SEQUENCE_LENGTH=1024
TEMPERATURE=1.0
TOP_P=0.9
NUMBER_OF_SAMPLES=2
OUTPUT_FILE=samples.json

python tools/generate_samples_gpt2.py \
       $GPT2_ARGS \
       --load $CHECKPOINT_PATH \
       --out-seq-length $MAX_OUTPUT_SEQUENCE_LENGTH \
       --temperature $TEMPERATURE \
       --genfile $OUTPUT_FILE \
       --num-samples $NUMBER_OF_SAMPLES \
       --top_p $TOP_P \
       --recompute
</pre>

<a id="gpt-2-evaluation"></a>
## GPT-2 Evaluation
We include example scripts for GPT-2 evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.

<a id="wikitext-perplexity-evaluation"></a>
### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
332
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
333
334
335
<pre>
TASK="WIKITEXT103"

336
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
337
338
339
340
341
342
343
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
344
345
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
346
347
348
349
350
351
352
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
353
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
354
355
356
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
       --batch-size 8 \
357
       --checkpoint-activations \
Mohammad's avatar
Mohammad committed
358
359
360
361
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
362
363


Mohammad's avatar
Mohammad committed
364
365
366
<a id="lambada-cloze-accuracy"></a>
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceeding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
367

368
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
369

Mohammad's avatar
Mohammad committed
370
371
<pre>
TASK="LAMBADA"
372

373
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
374
375
376
377
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
378

Mohammad's avatar
Mohammad committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
       --batch-size 8 \
       --checkpoint-activations \
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

<a id="bert-task-evaluation"></a>
## BERT Task Evaluation
<a id="race-evaluation"></a>
### RACE Evaluation
Steven Steinke's avatar
Steven Steinke committed
400
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files.
Mohammad's avatar
Mohammad committed
401
402
403
404
405
406
407
408

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
409
COMMON_TASK_ARGS="--num-layers 24 \
410
411
412
413
414
415
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
416
417
418
419
420

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
                      --checkpoint-activations \
421
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
422
                      --save $CHECKPOINT_PATH \
423
424
425
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
       --batch-size 4 \
       --lr 1.0e-5 \
       --warmup 0.06
</pre>

<a id="mnli-evaluation"></a>
### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
451
452
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
453
454
455
456
457
458
459
460
461
462
463

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
       --batch-size 8 \
       --lr 5.0e-5 \
       --warmup 0.065
</pre>
Raul Puri's avatar
Raul Puri committed
464

Mohammad's avatar
Mohammad committed
465
466
467
<a id="datasets"></a>
# Datasets
We do not host any datasets for GPT-2 or BERT training, however, we detail their collection so that our results may be reproduced.
468

Mohammad's avatar
Mohammad committed
469
<a id="collecting-wikipedia-training-data"></a>
470
## Collecting Wikipedia Training Data
Mohammad's avatar
Mohammad committed
471
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text." 
472

Mohammad's avatar
Mohammad committed
473
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, add newlines between sentences during data preprocessing. This is done with the `--split-sentences` flag in `preprocess_data.py` as described [above](#data-preprocessing). (Note that if you'd like to use Wikipedia data for GPT-2 training you should still clean it with nltk/spacy/ftfy, but do not split it into newline separated sentences.)
474

Mohammad's avatar
Mohammad committed
475
476
477
<a id="collecting-gpt-2-webtext-data"></a>
## Collecting GPT-2 Webtext Data
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.