configure_data.py 8.99 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""parses arguments and preps data loader"""

import copy
import torch

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
21
22
from megatron import data_utils
from megatron import mpu
Raul Puri's avatar
Raul Puri committed
23
24
25
26
27
28
29
30

class DataConfig:

    def __init__(self, defaults={}):
        super(DataConfig, self).__init__()
        self.defaults = defaults

    def apply(self, args):
31
32
        if torch.distributed.get_rank() == 0:
            print('configuring data')
Raul Puri's avatar
Raul Puri committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        self.apply_defaults(args)
        return make_loaders(args)

    def set_defaults(self, **kwargs):
        for k, v in kwargs.items():
            self.defaults[k] = v

    def apply_defaults(self, args):
        for k, v in self.defaults.items():
            k = k.replace('-', '_')
            if not hasattr(args, k):
                setattr(args, k, v)


def make_data_loader(dataset, batch_size, args):

    shuffle = args.shuffle
    if shuffle:
Raul Puri's avatar
Raul Puri committed
51
        sampler = data_utils.samplers.RandomSampler(dataset, replacement=True, num_samples=batch_size*args.train_iters)
Raul Puri's avatar
Raul Puri committed
52
53
    else:
        sampler = torch.utils.data.SequentialSampler(dataset)
54
55
56
    world_size = torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
    rank = torch.distributed.get_rank(group=mpu.get_data_parallel_group())
Raul Puri's avatar
Raul Puri committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    distributed = world_size > 1
    drop_last = distributed

    if distributed:
        batch_sampler = data_utils.samplers.DistributedBatchSampler(sampler,
                                                                    batch_size,
                                                                    drop_last,
                                                                    rank,
                                                                    world_size)
    else:
        batch_sampler = torch.utils.data.BatchSampler(sampler,
                                                      batch_size,
                                                      drop_last)

    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_sampler=batch_sampler,
                                              num_workers=args.num_workers,
                                              pin_memory=True)

    return data_loader


def make_tfrecord_loaders(args):
    """Load train/val/test dataset from shuffled TFRecords"""

82
    import data_utils.tf_dl
Raul Puri's avatar
Raul Puri committed
83
84
85
86
    data_set_args = {'batch_size': args.batch_size,
                     'max_seq_len': args.seq_length,
                     'max_preds_per_seq': args.max_preds_per_seq,
                     'train': True,
Raul Puri's avatar
Raul Puri committed
87
88
89
90
                     'num_workers': max(args.num_workers, 1),
                     'seed': args.seed + args.rank + 1,
                     'threaded_dl': args.num_workers > 0
                     }
Raul Puri's avatar
Raul Puri committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    train = data_utils.tf_dl.TFRecordDataLoader(args.train_data,
                                                **data_set_args)
    data_set_args['train'] = False
    if args.eval_seq_length is not None:
        data_set_args['max_seq_len'] = args.eval_seq_length
    if args.eval_max_preds_per_seq is not None:
        data_set_args['max_preds_per_seq'] = args.eval_max_preds_per_seq
    valid = None
    if args.valid_data is not None:
        valid = data_utils.tf_dl.TFRecordDataLoader(args.valid_data,
                                                    **data_set_args)
    test = None
    if args.test_data is not None:
        test = data_utils.tf_dl.TFRecordDataLoader(args.test_data,
                                                   **data_set_args)
    tokenizer = data_utils.make_tokenizer(args.tokenizer_type,
                                          train,
                                          args.tokenizer_path,
                                          args.vocab_size,
                                          args.tokenizer_model_type,
                                          cache_dir=args.cache_dir)

    return (train, valid, test), tokenizer


def make_loaders(args):
    """makes training/val/test"""

119
    if args.data_loader == 'tfrecords':
Raul Puri's avatar
Raul Puri committed
120
        return make_tfrecord_loaders(args)
121
122
123
    world_size = torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
    batch_size = args.batch_size * world_size
Raul Puri's avatar
Raul Puri committed
124
125
    eval_batch_size = batch_size
    if args.eval_batch_size is not None:
126
        eval_batch_size = args.eval_batch_size * world_size
Raul Puri's avatar
Raul Puri committed
127
128
    seq_length = args.seq_length
    if seq_length < 0:
129
        seq_length = seq_length * world_size
Raul Puri's avatar
Raul Puri committed
130
131
    eval_seq_length = args.eval_seq_length
    if eval_seq_length is not None and eval_seq_length < 0:
132
        eval_seq_length = eval_seq_length * world_size
Raul Puri's avatar
Raul Puri committed
133
    split = get_split(args)
134
135
    if args.data_path is not None:
        args.train_data = args.data_path
Raul Puri's avatar
Raul Puri committed
136
137
138
    data_set_args = {
        'path': args.train_data,
        'seq_length': seq_length,
139
        'lazy': args.data_loader == 'lazy',
Raul Puri's avatar
Raul Puri committed
140
141
142
143
144
145
146
147
148
149
150
151
        'delim': args.delim,
        'text_key': args.text_key,
        'label_key': 'label',
        'non_binary_cols': None,
        'ds_type': args.data_set_type,
        'split': split,
        'loose': args.loose_json,
        'tokenizer_type': args.tokenizer_type,
        'tokenizer_model_path': args.tokenizer_path,
        'vocab_size': args.vocab_size,
        'model_type': args.tokenizer_model_type,
        'cache_dir': args.cache_dir,
Raul Puri's avatar
Raul Puri committed
152
        'max_preds_per_seq': args.max_preds_per_seq,
153
154
        'presplit_sentences': args.presplit_sentences,
        'parallel_group': mpu.get_data_parallel_group()}
Raul Puri's avatar
Raul Puri committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    eval_set_args = copy.copy(data_set_args)
    eval_set_args['split'] = [1.]
    # if optional eval args were set then replace their
    # equivalent values in the arg dict
    if eval_seq_length:
        eval_set_args['seq_length'] = eval_seq_length
    if args.eval_max_preds_per_seq:
        eval_set_args['max_preds_per_seq'] = args.eval_max_preds_per_seq
    if args.eval_text_key is not None:
        eval_set_args['text_key'] = args.eval_text_key

    # make datasets splits and tokenizer
    train = None
    valid = None
    test = None

    if args.train_data is not None:
        train, tokenizer = data_utils.make_dataset(**data_set_args)
        if data_utils.should_split(split):
            train, valid, test = train
176
        eval_set_args['tokenizer'] = tokenizer
Raul Puri's avatar
Raul Puri committed
177
178
179
180

    # make training and val dataset if necessary
    if valid is None and args.valid_data is not None:
        eval_set_args['path'] = args.valid_data
181
182
        valid, tokenizer = data_utils.make_dataset(**eval_set_args)
        eval_set_args['tokenizer'] = tokenizer
Raul Puri's avatar
Raul Puri committed
183
184
    if test is None and args.test_data is not None:
        eval_set_args['path'] = args.test_data
185
        test, tokenizer = data_utils.make_dataset(**eval_set_args)
Raul Puri's avatar
Raul Puri committed
186
187
188
189

    # wrap datasets with data loader
    if train is not None and args.batch_size > 0:
        train = make_data_loader(train, batch_size, args)
190
191
192
        args.do_train = True
    else:
        args.do_train = False
Raul Puri's avatar
Raul Puri committed
193
194
195
    eval_batch_size = eval_batch_size if eval_batch_size != 0 else batch_size
    if valid is not None:
        valid = make_data_loader(valid, eval_batch_size, args)
196
197
198
        args.do_valid = True
    else:
        args.do_valid = False
Raul Puri's avatar
Raul Puri committed
199
200
    if test is not None:
        test = make_data_loader(test, eval_batch_size, args)
201
202
203
        args.do_test = True
    else:
        args.do_test = False
Raul Puri's avatar
Raul Puri committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    return (train, valid, test), tokenizer

def get_split(args):
    """
    Get dataset splits from comma separated string list
    """
    splits = []
    if args.split.find(',') != -1:
        splits = [float(s) for s in args.split.split(',')]
    elif args.split.find('/') != -1:
        splits = [float(s) for s in args.split.split('/')]
    else:
        splits = [float(args.split)]
    split_total = sum(splits)
    if split_total < 1.:
        splits.append(1-split_total)
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    if args.valid_data is not None:
        splits[1] = 0.
    if args.test_data is not None:
        splits[2] = 0.
    final_sum = sum(splits)
    return [s/final_sum for s in splits]

def configure_data():

    """add cmdline flags for configuring datasets"""
    # These are options that are used by data_utils, but are either
    # deprecated or not meant to be exposed to the command line user.
    # These options are intneded to be set in code by specific scripts.
    defaults = {
        'world_size': 1,
        'rank': -1,
        'persist_state': 0,
        'lazy': False,
        'transpose': False,
        'data_set_type': 'supervised',
        'seq_length': 256,
        'eval_seq_length': 256,
        'samples_per_shard': 100
    }

    return DataConfig(defaults=defaults)