global_vars.py 8.07 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron global variables."""

import os
import sys
Mohammad's avatar
Mohammad committed
20
21
22
import time

import torch
Mohammad's avatar
Mohammad committed
23

24
from megatron.tokenizer import build_tokenizer
Mohammad's avatar
Mohammad committed
25
from .arguments import parse_args
mohammad's avatar
mohammad committed
26
from .microbatches import build_num_microbatches_calculator
Mohammad's avatar
Mohammad committed
27
28

_GLOBAL_ARGS = None
mohammad's avatar
mohammad committed
29
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
_GLOBAL_TOKENIZER = None
_GLOBAL_TENSORBOARD_WRITER = None
_GLOBAL_ADLR_AUTORESUME = None
_GLOBAL_TIMERS = None


def get_args():
    """Return arguments."""
    _ensure_var_is_initialized(_GLOBAL_ARGS, 'args')
    return _GLOBAL_ARGS


mohammad's avatar
mohammad committed
42
43
44
45
def get_num_microbatches():
    return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()


46
47
48
49
50
51
52
def get_current_global_batch_size():
    return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size()


def update_num_microbatches(consumed_samples, consistency_check=True):
    _GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples,
                                               consistency_check)
mohammad's avatar
mohammad committed
53
54


Mohammad's avatar
Mohammad committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def get_tokenizer():
    """Return tokenizer."""
    _ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
    return _GLOBAL_TOKENIZER


def get_tensorboard_writer():
    """Return tensorboard writer. It can be None so no need
    to check if it is initialized."""
    return _GLOBAL_TENSORBOARD_WRITER


def get_adlr_autoresume():
    """ADLR autoresume object. It can be None so no need
    to check if it is initialized."""
    return _GLOBAL_ADLR_AUTORESUME


def get_timers():
    """Return timers."""
    _ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
    return _GLOBAL_TIMERS


79
80
def set_global_variables(extra_args_provider=None, args_defaults={},
                         ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
81
    """Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
Mohammad's avatar
Mohammad committed
82
    args = _parse_args(extra_args_provider=extra_args_provider,
83
84
                       defaults=args_defaults,
                       ignore_unknown_args=ignore_unknown_args)
mohammad's avatar
mohammad committed
85
    _build_num_microbatches_calculator(args)
Mohammad's avatar
Mohammad committed
86
    _ = _build_tokenizer(args)
Mohammad's avatar
Mohammad committed
87
88
    _set_tensorboard_writer(args)
    _set_adlr_autoresume(args)
Mohammad's avatar
Mohammad committed
89
90
91
    _set_timers()


92
93
def _parse_args(extra_args_provider=None, defaults={},
                ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
94
95
96
    """Parse entire arguments."""
    global _GLOBAL_ARGS
    _ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args')
Mohammad's avatar
Mohammad committed
97
    _GLOBAL_ARGS = parse_args(extra_args_provider=extra_args_provider,
98
99
                              defaults=defaults,
                              ignore_unknown_args=ignore_unknown_args)
Mohammad's avatar
Mohammad committed
100
    return _GLOBAL_ARGS
Mohammad's avatar
Mohammad committed
101
102


mohammad's avatar
mohammad committed
103
104
105
106
107
108
def _build_num_microbatches_calculator(args):

    global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
    _ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR,
                                   'num microbatches calculator')

mohammad's avatar
mohammad committed
109
110
    _GLOBAL_NUM_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator(
        args)
mohammad's avatar
mohammad committed
111
112


Mohammad's avatar
Mohammad committed
113
def _build_tokenizer(args):
Mohammad's avatar
Mohammad committed
114
115
116
    """Initialize tokenizer."""
    global _GLOBAL_TOKENIZER
    _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
Mohammad's avatar
Mohammad committed
117
    _GLOBAL_TOKENIZER = build_tokenizer(args)
Mohammad's avatar
Mohammad committed
118
119
120
121
122
123
124
    return _GLOBAL_TOKENIZER


def rebuild_tokenizer(args):
    global _GLOBAL_TOKENIZER
    _GLOBAL_TOKENIZER = None
    return _build_tokenizer(args)
Mohammad's avatar
Mohammad committed
125
126


Mohammad's avatar
Mohammad committed
127
def _set_tensorboard_writer(args):
Mohammad's avatar
Mohammad committed
128
129
130
131
132
133
    """Set tensorboard writer."""
    global _GLOBAL_TENSORBOARD_WRITER
    _ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER,
                                   'tensorboard writer')

    if hasattr(args, 'tensorboard_dir') and \
mohammad's avatar
mohammad committed
134
       args.tensorboard_dir and args.rank == (args.world_size -1):
Mohammad's avatar
Mohammad committed
135
136
137
138
139
140
141
142
143
144
145
        try:
            from torch.utils.tensorboard import SummaryWriter
            print('> setting tensorboard ...')
            _GLOBAL_TENSORBOARD_WRITER = SummaryWriter(
                log_dir=args.tensorboard_dir)
        except ModuleNotFoundError:
            print('WARNING: TensorBoard writing requested but is not '
                  'available (are you using PyTorch 1.1.0 or later?), '
                  'no TensorBoard logs will be written.', flush=True)


Mohammad's avatar
Mohammad committed
146
def _set_adlr_autoresume(args):
Mohammad's avatar
Mohammad committed
147
148
149
150
151
152
153
154
155
156
    """Initialize ADLR autoresume."""
    global _GLOBAL_ADLR_AUTORESUME
    _ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume')

    if args.adlr_autoresume:
        if args.rank == 0:
            print('enabling autoresume ...', flush=True)
        sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
        try:
            from userlib.auto_resume import AutoResume
Neel Kant's avatar
Neel Kant committed
157
        except BaseException:
Mohammad's avatar
Mohammad committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            print('ADLR autoresume is not available, exiting ...')
            sys.exit()

        _GLOBAL_ADLR_AUTORESUME = AutoResume


def _set_timers():
    """Initialize timers."""
    global _GLOBAL_TIMERS
    _ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
    _GLOBAL_TIMERS = Timers()


def _ensure_var_is_initialized(var, name):
    """Make sure the input variable is not None."""
    assert var is not None, '{} is not initialized.'.format(name)


def _ensure_var_is_not_initialized(var, name):
    """Make sure the input variable is not None."""
    assert var is None, '{} is already initialized.'.format(name)
Mohammad's avatar
Mohammad committed
179
180


181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
class _Timer:
    """Timer."""

    def __init__(self, name):
        self.name_ = name
        self.elapsed_ = 0.0
        self.started_ = False
        self.start_time = time.time()

    def start(self):
        """Start the timer."""
        assert not self.started_, 'timer has already been started'
        torch.cuda.synchronize()
        self.start_time = time.time()
        self.started_ = True

    def stop(self):
        """Stop the timer."""
        assert self.started_, 'timer is not started'
        torch.cuda.synchronize()
        self.elapsed_ += (time.time() - self.start_time)
        self.started_ = False

    def reset(self):
        """Reset timer."""
        self.elapsed_ = 0.0
        self.started_ = False

    def elapsed(self, reset=True):
        """Calculate the elapsed time."""
        started_ = self.started_
        # If the timing in progress, end it first.
        if self.started_:
            self.stop()
        # Get the elapsed time.
        elapsed_ = self.elapsed_
        # Reset the elapsed time
        if reset:
            self.reset()
        # If timing was in progress, set it back.
        if started_:
            self.start()
        return elapsed_


Mohammad's avatar
Mohammad committed
226
227
228
229
230
231
232
233
class Timers:
    """Group of timers."""

    def __init__(self):
        self.timers = {}

    def __call__(self, name):
        if name not in self.timers:
234
            self.timers[name] = _Timer(name)
Mohammad's avatar
Mohammad committed
235
236
237
238
239
240
241
242
243
244
        return self.timers[name]

    def write(self, names, writer, iteration, normalizer=1.0, reset=False):
        """Write timers to a tensorboard writer"""
        # currently when using add_scalars,
        # torch.utils.add_scalars makes each timer its own run, which
        # polutes the runs list, so we just add each as a scalar
        assert normalizer > 0.0
        for name in names:
            value = self.timers[name].elapsed(reset=reset) / normalizer
mohammad's avatar
mohammad committed
245
            writer.add_scalar(name + '-time', value, iteration)
Mohammad's avatar
Mohammad committed
246
247
248
249
250
251
252

    def log(self, names, normalizer=1.0, reset=True):
        """Log a group of timers."""
        assert normalizer > 0.0
        string = 'time (ms)'
        for name in names:
            elapsed_time = self.timers[name].elapsed(
253
                reset=reset) * 1000.0 / normalizer
Mohammad's avatar
Mohammad committed
254
255
            string += ' | {}: {:.2f}'.format(name, elapsed_time)
        if torch.distributed.is_initialized():
mohammad's avatar
mohammad committed
256
257
            if torch.distributed.get_rank() == (
                    torch.distributed.get_world_size() - 1):
Mohammad's avatar
Mohammad committed
258
259
260
                print(string, flush=True)
        else:
            print(string, flush=True)